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Scientific Challenges at High Pressure

General HP Science
sTerapascal pressures
Electron volt temperature
eFundamental properties at HP

Physics and Astrophysics
*Dense, hot hydrogen at high P-T
*Metallic hydrogen at low T
e|ces in giant planets & satellites

*Free electron gas
*Metals and superconductivity
Strongly correlated systems

Chemistry and Crystallography
«Chemical reactivity and affinity
*Bonding and stereochemistry
elonic radii and atomic coordination

Novel incommensurate structures Materials Science
*Creating novel materials
Geosciences Superhard diamond and beyond
Micro-nano mineralogy *Hydrogen storage
«Deep Earth geochemistry *Magnetic materials
eMission to the core Stockpile Stewardship Science
Geodynamics and seismology * Bio-materials




High-pressure synchrotron research --
Four decades of HP operation modes

1980s Non-dedicated beamlines for HP users

1990s Dedicated HP diffraction beamline (e.g., X17c,
NSLS)

2000s Dedicated HP multi-technigue beamlines (e.g.,
HPCAT)

Future Integrated facility -- optimized HP experiments
at facility-wide, specialized beamlines
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High-Pressure Phase Diagram and Equation of State of Solid Helium

from Single-Crystal X-Ray Diffraction to 23.3 GPa

H. K. Mao, "’ R. J. Hemley, " Y. Wu,”” A. P. Jephcoat,'" L. W. Finger,"" C. S. Zha,""
and W. A. Bassett
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FIG. 1. Representative energy-dispersive x-ray diffraction

spectrum for solid helium (101 reflection) at 23.3 GPa.
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X17c superconductor beamline
Trailblazer for HP Research

*Dedicated high-pressure XRD beamline

*Dedicated high-pressure IR beamline

«Advancing multimegaber XRD

Integration of XRD and laser-heating at high P-T
*Double-sided laser heating

Resistive heating and XRD above 100 GPa-1300 K
Integration of HP XRD, IR, on-line Raman at cryogenic T
*Radial diffraction for HP elasticity tensor and rheology
Single crystal diffraction above 60 GPa

-- but limited to x-ray diffraction



High pressure and low temperature

Cryogenic system had been setup at X17C and X17B for high pressure and low temperature experiments.

e |

R. LeToullec et al, High pressure research,6,379-388,1992

Membrane DAC on a c circle in Dewar
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Equation of State and Phase Diagram of Solid *He from Single-Crystal X-ray Diffraction
over a Large P-T Domain

P. Loubeyre, R. LeToullec, and J. P. Pinceaux

H. K. Mao, J. Hu, and R. J. Hemley
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High P-T x-ray diffraction of He (46-400K, up to 58 GPa) at X17C, NSLS.
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2000 -- Dedicated HP multi-technique beamlines
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The High Pressure Collaborative Access Team
project at the Advanced Photon Source

Beamline scientists enable the HP-SR development
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New class of metal nitrides could lead to more durable semiconductors

www.chemie.de/news

A novel class of nitrides made from PtN, in pyrite
noble metals was synthesized under structure
extreme conditions. Using a diamond
anvil cell to create high pressures and
a laser to create high temperatures,
the first bulk nitride of the noble metal
iridium was created. By combining x-
ray diffraction measurements at

Powder x-ray

o o _ diffraction
HPCAT with first-principle theoretical pattern of Pt
modeling, the structure and bulk and PtN,. pt || Pt
modulus of platinum nitride have been AR I Lo
determined. The results could prove — 6000 1
useful in semiconductor, < 100 £
. . 4 50 4 210

superconducFor and corrgsmn- | % 4000 1 111 | 200 ol
resistant devices by making materials > o
more durable and reliable. 2 } ‘ 220

D

E 2000 /- 311 ] 1 -
J. C. Crowhurst, et al., Synthesis I 111 /{ ]!222 1'}1 402 422]

. . . . 420
and characterization of the nitrides B U - IL o U\l l
of platinum and iridium, Science. 0 | . | .
311, 1275 (2006) 10 15 20 25
20 (degrees)

HPCAT 2006 highlight X-ray diffraction, laser-heating, Raman
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Seismic Anisotropy in D Layer

Sebastien Merkel and colleagues s land's} B Fastest Vs
from U. C. Berkeley, Princeton polarization
U., and Carnegie Institution
reported plastic behavior of
MgGeO, post-perovskite, an

analog for the main constituent in S (A .0_1
the D” layer deep at the Earth’s g e

core-mantle boundary. They
monitored the development of
lattice preferred orientations in x-
ray diffraction experiment above
100 GPa at HPCAT, and
discovered that (100) and (110)
slip dominate the plastic
deformation of post-perovskite.
The results give a new
interpretation to the D” seismic
anisotropy — the splitting of

horizontally and vertically
polarized seismic waves. S. Merkel et al., Plastic deformation of MgGeO, post-perovskite
at lower mantle pressures, Science 311, 644 (2006)

Downwelling
slab dvs = 0.7 %

Vp =13.79 km/s

dvs = 2.7
Vp = 13.68 km/s

- = dVs = 0.1 %
Vp = 13.59 km/s

Contribution of silicate p-Pv to seismic anisotropy in D"
after 20% deformation in shear

HPCAT 2006 highlight Radial x-ray diffraction, laser-heating
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Valence Band Width Near Pressure-Induced Metallization of Ge

Pressure causes drastic changes in — —— 1GPa
s " % |—— 5GPa
electronic bandwidth and band gap, gﬁ/x /A AR
and leads to metallization of solids. I s Sl /A | 0
] o Valence-band @ 4p

New high-pressure x-ray emission emission E
spectroscopy technique developed spectra of Ge i e b 1
at HPCAT has been used to probe athigh 2 =

o ) ) pressures o
the valence-band emission line in E
Ge from 4p states to 1s core state
(Kp2 at 11100.8 eV'). The band
widths for the semiconductor phase

. 11080 11100
below 10 GPa and the metallic Energy (eV)
phase at higher pressures are
determined, and the results are Valence-band width of 5 |
d ide th ical del Ge under pressure.

used to guide theoretical models Solid circles with error
beyond the current density- bars—experiment; all

functional theory and the GW
approximation.

curves -- theories

other symbols and &
L
=

V. V. Struzhkin et al., Valence band x-ray
emission spectroscopy of compressed

germanium, Phys. Rev. Lett. 96, 137402 (2006) 0 10 20 a0
Pressure (GPa)

HPCAT 2006 highlight X-ray emission spectroscopy
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Novel Osmium and Iridium Nitrides

Carnegie summer undergraduate intern Intern Andrea
. Young (left)
Andrea F. Young discovered two novel and mentor
transition metal nitrides, IrN, and OsN,,. Eugene
Synchrotron x-ray diffraction at HPCAT gi;erﬂ;)%anz
was used to determine the structures of HPCAT
nitrides and the equations of state for both
the parent metals as well as the newly X-ray
synthesized materials. These new diffraction
compounds have bulk moduli comparable patterns
with those of traditional superhard | #=0.3888
materials. Ab initio calculations indicate i <[ Gpai e 1L H 1 i
that both compounds have a metal:nitrogen il R A T )
stoichiometry of 1:2 and that nitrogen of |r“§r’1d N, at6aGPa | .
intercalates in the lattice of the parent ‘% I
metal in the form of singly bonded N-N T ' |
units. ‘
= Os and OsN, at 43 GPa | i
A. F. Young et. al., Synthesis of ) 042387 i 1 1@-.5 ! !
novel transition element nitrides R A N .uua..___A.Mu—
IrN, and OsN,, Phys. Rev. Lett. 96, [ ACHEED A | vy —

Counts

155501 (2006)

1 1 1 1 1 ] 1 1
B0 B.0 10.0 12.0 14.0 16.0 18.0 20.0
2-Theta, deg

HPCAT 2006 highlight X-ray diffraction, laser-heating, Raman
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Low-spin (Mg,Fe)O magnesiowdastite in the lower mantle

MG 75Feq 550, 8 um thick
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A. Goncharov, V. Struzhkin, S. Jacobsen,
Reduced low spin (Mg,Fe)O in the lower
mantle, Science. 312, 1205 (2006)
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J-F Lin, Spin transition of iron in magnesio-
wastite in the Earth's lower mantle" Nature
436, 377 (2005)

HPCAT 2006 highlight X-ray diffraction, x-ray emission spectroscopy, optical absorption
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HP-CAT
collaboration
with other
APS sectors
has been very
successful but
enormous
capabilities at
APS has yet
been
tapped....

15-ID 14-BM /15-1D-8 /1 4-1D-D
b 17-Baa /171D
4BMC/I4BMD/ D N\ | o STEM
NN o
15-BM/13D L - 18D

= = 19-BM/ 19D
12-BM /124D -/ == / A

= 7 20-BM /20-1D

11D-5/11-D-C/11-1D-D = _of — 2
f i e - o e oy x
10-D | /. e = | . - ,ﬂ -iM [ 22-1D
- .r._.qnl. 4 z A i . . ) .\‘- :

.BM/9-1D 7
! ) \
I Y/ n ﬂl gleal & lile Selence R
S0N/D = [ M Eeolsall sclence \1

| ) ;. \ [ } | S——
sip/6i0.0", | AN ._ }_:_ —
g Cente lor
' Manoscola

§-BM-C/5-BM-D/5-ID/ || ol

B 5 \ v " .r\-:;. _a-:___
. P B " A {77 poosT
3D, \ B W e A1 A IMMECT
5 5 ' ek i \

] ST CHINY

L SeglP—" :l WY Materals |

s\ _....-*- L T = AR T — )

4-1D-C /4-ID-DL._ | \}' e o ""“*'hfj. o /i ,.5'- =
T Y ! /i i ':

2.8M/2:1D8/22D.0/24D4 | "N A= ==

(- e —
N =
._:ﬁ, B \ e, S 1 'Il i A —‘f 3‘-":"
FBM/HID ey | o Tl
e e - Wt IR ke
) Wi -
>, by - R 4
_— & N 22D
W -_. - Rt w - -
) i ‘-.-“- L - - . !
o — =\
N \ 7 e o 9 -.M 13-
. — S F NP R TNT L jod e [33- / 0
e, Y . ABSCMOLY ARCA | = i
2 ) —— — D
UTILITY - S S P— | Ty -
BN NI f_.‘ - ! ~
A +
\ o
\ A -
o " A Y COMFENEMECE

i “—— CEMTER
CEWMTIAL A
L AR P
ML THMds



Advanced Photon Source A‘-‘:

APS Techniques Directory

Absorption/Spectroscopy

Fluorescence spectroscopy g-10

Photoemizsion spectroscopy (XPS) 4-10-C
Yeray absarption fine structure (RAFS) 1010, 1-10-0, 1260 |, 13-BM | 153D, 16-10-B | 18-I00, 20-BM |, 20-10, 5-BM-0 | 3-Bt
Feray magnetic circular dichraism (MCD) -]

[-C, 4-10-0

High Pressure

Diamand Anvil Cell (DAC) 1310, 16-10-B

Multi-Anvil Press (LVF) _M u

Imaging

EXAFS Micrascopy 10-ID 1810, 20-10

Wlicro fluorescence 180 2-I0-B |, 2-I0-D | 2-I0-E | 20-ID
Micraprabe 1310, 10-0 , 20-10 , 34-10, 7-ID
Phase contrast imaging -0, 2-BM | ZID-B

Photoemission electron microscopy (FEEM)  4-ID-C

Tomagraphy 13-BM | 2-BM | 5-BM-C

Topography J3-Bh




Protein Crystallography

Wacromolecular crystallography

hlulti wavelength anamalous dispersion (MAD)

14-B0-C | 14-B0-0 |, 14-100 1710 13-B8 | 15-10 | 2210 | 31-1D |, &-10 | 5-Bh
14-B0-0 | 14-100, 17100, 19-BM |, 19-1D | L4100 | 5-Bhd

Anomalous and Resonant Scattering
Coherent x-ray scattering

Campton scattering

Diffraction anomalous fine structure (DAFS)
Fiber Diffraction

General Diffraction

High energy %-ray scattering
Inelastic scattering

Liguid scattering

hWagnetic #-ray scattering

Micro - diffraction

Muclear Rezsonant Scattering
Falymer

Fowder diffraction

Reflectivity

single crystal diffraction

small angle x-ray scattering [(SARS)
surface diffraction

Time-resolved x-ray scattering
Ultra-small Angle %-ray Scattering
Wide angle x-ray scattering (WAXS)
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20-B |, 34-D , &-10

16-ID-B

10-10 | 20-Br | 20-10
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13-I0 | 16-I0-B |, 3-1D |, 33-1D

15-10, B-I0, 5-I0

4-10-C |, 4-10-0 | B-I0 | B-10-D

13-, 16-I0-B |, 1510, 2B | 2-10-0 | 34-I0

1-B0 , 12-BM , 16-I0-8 | 33-BM , 2-BM-C  &I0  B-ID | 6-D-0
1-BM

33-BM

12-10 15-10  18-10 , 3210, &-10 810, S-ID

14-10, 15-10 | 18-I0 , B-I0-D , 7-I1D , 5-ID

331D

15-10 | &
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... but beamline scientists’ main obligations are to

build, maintain, operate, and support users. Little time
for HP-SR development at other beamlines

Arunkumar Bommannavar

Paul Chow

Yang Ding

Daniel Hausermann GL/CDAC

Michael Hu Russell Hemley

Peter Liermann Ho-kwang Mao

Haozhe Liu Stephen Gramsch

Yue Meng

Veronica O’Connor Malcolm Nicol — UNLV

Eric Rod Choong-Shik Yoo — LLNL
Guoyin Shen Murli Manghnani — U Hawaii

Former staff:
Daniel Errandonea

Users attempting to develop novel
Maddury Somayazulu

experiments at other beamlines are facing
the same challenge as in the first decade.
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HPSynC
A team similar to a beamline, not working
as beamline scientists but bridging...
o Scientific disciplines and community

e High P-T vessels

* Analytic probes and facilities
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HPCAT
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