Solid State Chemistry - Materials Science High Pressures - High Temperatures In Situ : Synthesis, Structure, Properties

Paul F. McMillan

University College London Davy-Faraday Lab., Royal Institution

Materials Chemistry Centre

Chemistry-Chemical Engineering

Ri

Catalysis ; Magnetics ; Ceramics ; Thin Films, Nanoparticles

EPRSC Portfolio : RI-Birkbeck-UCL : CRA Catlow, P Barnes, PFM "Functional Materials" : Laboratory + Synchrotron + Theory

High P-T Solid State Chemistry Synthesis, In Situ Studies

Multi-anvil Piston cylinder

Diamond anvil cell ; laser heat

Focusing ; high penetration (to 100 keV) diffraction, imaging, spectroscopy : 3-G

Transition metal nitrides, carbides

High hardness : high $T_c : \delta MoN - \gamma Mo_2N : NbN - MoN$?

D. Machon phys stat sol (b) 2006

Nitride Spinels P ~10-12 GPa ; T ~1200-1500°C

γ -Ge₃N₄, γ -Si₃N₄, Sn₃N₄

Zerr *et al Nature* **1999,** *400*, 340 Leinenweber *et al Chem. Eur. J.* **1999,** *5*, 3076

Incompressible : high-hardness high-T stability (in N_2 , air ?) $K_0 = 290$ GPa $H_V : 30-43$ GPa α -Al₂O₃ : $H_V = 32$ GPa α -, β -Si₃N₄ : $H_V = 20$ GPa Synchrotron : Synthesis, K₀

Soignard *et al J. Phys. C* **2001,** *13*, 555 Zerr *et al J Am Ceram Soc* **2002,** *85*, 86

Shock wave : large-scale powder synthesis : Sekine et al Appl. Phys. Lett. 2000, 76, 3706

Wide direct-gap : 2-4 eV?

Mo, Ching et al, PRL **1999** J. Dong et al, PRB **2000, 2004** Leitch et al J Phys Cond Mat 2004 XAS, XES : ALS

laboratory PL; CL

 γ -Ge₃N₄; γ -Si₃N₄

Defects (N³⁻ vacancies ?) : Raman : XRD : Chem. Mat. 16 (2004) 3533

ALS: synchrotron X-ray absorption, XES Alex Moewes: Leitch et al J Phys Cond Mat (2004) γ -Si₃N₄: $E_g = 4.3 \text{ eV}$ probe excited electronic states

Ga-O-N spinels : Ga_3O_3N (cf : γ -, δ - Al_2O_3 ; AlO_xN_y)

Chemical precursors + high-P,T synthesis : I. Kinski et al. : $Ga_{2.81}O_{3.57}N_{0.43}$ Z Naturforsch. (2005)

GaN/Ga₂O₃ mixtures : E Soignard et al Chem Mat 17 (2005) 5465

 $GaN + Ga_2O_3 = Ga_{2.8}O_{3.24}N_{0.64}$ Ga^{3+} vacancies - octahedral sites

DAC + Multi-anvil 20 30 40 50 60 702 0 at CuKasyntheses : P ~ 5 GPa ; 1200-1700°C

Wide-gap : luminescent; catalysis

GaN; Ga₂O₃ phase transitions : D. Machon et al PRB 2006

Ti_3N_4 ?

- Predicted stable : spinel structure : Ching et al PRB (2000)
- But : Ti + N_2 ; highly refractory, high density ; usually non-stoichiometric Ti N_x
- However : X-ray amorphous "Ti₃N₄" : from precursors : *Baxter et al (1996)*
 - A. Hector, A. Jackson (Southampton) : O. Shebanova (UCL/RI) : characterise ''amorphous'' products : high-P,T treatment of precursors : JSSC 2006
- High T annealing : microcrystalline TiN in ''amorphous'' matrix
- Low T (<450°C) : $TiC_{0.22}N_{1.01}H_{0.07}$: ~ $Ti_3(N,C)_4$
- Amorphous matrix + nc-TiN (superhard nanocomposites ?)
- XAS/EXAFS amorphous matrix : octahedral Ti :
 - 50-60% vacancies on
 - cation and anion sites

''ladder''

structures

Light-element solids : C-O-N chemistry at high P,T

β-C₃N : superhard ? M. Cohen, PRB 1985

 $C_3N_3CI_3$ $C_3N_6H_6$

JACS <u>123</u> (2001) 7788

CO₂-V : C-S Yoo, V Iota (1999)

Pressure-induced amorphisation

$H_4C_2N_2$ at 40 GPa : laser heat

747

(b)

(d)

NKOOD

CHLCL.

O0

42.3

E. Horvath-Bordon, R. Riedel, A. Zerr, O. Shebanova, D. Machon, G. Miehe, P. v. Achen, P. Kroll, E. Lowther : Darmstadt-London

Diamond anvil : *megabar, high-T : laser heat*

- tight focus / collimation to 1-5 μm (heat load on optics : focusing : <u>access</u>)
 mono ADXRD (+ white beam ED : imaging) multi-wavelength : scattering, spectroscopy
 high flux (low-Z materials) : 3-G +
- Multi-anvil (toroidal) cells large volume
 - highly penetrating X-rays : capsule assemblies ; high-Z samples : >80-100 keV
 - white beam (*ED; transmission/fluorescence imaging*) ; monochromatic ADXRD
 - high intensity : rapid data collection : *reaction kinetics*, mapping inside reaction chambers

Liquids, Glasses, Amorphous Solids at High-P,T : 'Polyamorphism'' : Liquid-Liquid Phase Transitions Amorphous Si : PIA : semiconductor LDA - metallic HDA

D. Daisenberger, D. Machon, M. Wilson, PFM

MD : Stillinger-Weber

Amorphous/liquid state studies: high-Q : high flux : time domain ?

In Situ Studies of Functional Materials

EPSRC Portfolio P Barnes, PFM, CRA Catlow

Catalysts ; Ceramics : Synthesis : In Situ Studies <u>P. Barnes</u>, S. Jacques, O. Leynaud, P. Hutchins, R. Cernik, M. Vickers, M. Sheehey

- highly penetrating beam : furnace/autoclave; high-Z samples
- white beam energy dispersive TEDDI
- time-resolved 3-D imaging : reactor profiles : diffraction, spectroscopy, transmission imaging

Studies at CHESS/ERL :

- In situ high-P,T chemistry : DACs : tight focus
- High flux : low-Z materials : time-resolved reaction chemistry ? ; amorphous diffraction
- Use X-ray beam to initiate reactions ? (SHS : one pulse to initiate, one pulse to study: shock studies ?)
- Investigate excited states of solids ?
- Large volume cells (multi-anvil, toroidal) : high penetration (<80-100 keV : sample assemblies; high-Z materials) : autoclaves, reaction chambers, catalytic reactors XRD, imaging, tomography
- Time resolution (*detectors*) : map reaction profiles (kinetics), mixing inside reactors