Ultrafast X-Ray Absorption Spectroscopy at an ERL X-ray Source

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Christian Bressler ETH Lausanne

Why ultrafast X-ray Spectroscopy ?

- Element specific
- Applicable to all media (gas, liquids, solids, biological samples)
- Probes the electronic structure via XANES (in particular valence orbitals)
- Probes the local geometric structure
 Short time scales ↔ short distance scales
- Precision! (< 10 % of typical bond lengths)

1. Intramolecular Charge Transfer

2. Light-Induced Spin Crossover

3. Solvation Dynamics in Liquids

I. Electron Transfer Reactions

Aqueous [Ru(bpy)₃]²⁺

- H-atom of coordination chemistry
- Photosensitizer
- Solar Cells
- Catalyst in Redox-Reactions
- Model for metalloproteins
- Marker in Biology,...

Ground, Transient and Excited State XAFS of $Ru(bpy)_3$ (aq)

Saes et al, Phys. Rev. Lett. 90 (2003) 47403

Ground, Transient and Excited State XAFS of $Ru(bpy)_3$ (aq)

Comparison of experimental and simulated line shapes

W. Gawelda et al., submitted to JACS (2005)

<u>II. Light-induced spin cross-over</u>

<u>compounds</u>

Photoinduced Low Spin (S=0) \rightarrow High Spin (S=2) transition

Fe(bpy)₃]²⁺(aq): (LS) \rightarrow (HS) (<1ps) (HS) \rightarrow (LS) (700 ps)

Ground state spectrum

Transient spectrum Fe-N Bond increase: $\Delta R = 0.2 \pm 0.015$ Å

III. Solvation Dynamics

Time-Resolved XANES of aqueous Iodide Iodine L₁ edge

Using an ERL Hard X-Ray Source

• Flux (Photons/pulse)

• Pulse Width

Ultrafast *EXAFS* on Transition Metal Compounds

Bressler and Chergui, Chem. Rev. (2004)

Feasibility Range of Possible Experiments

One Possible ERL Experiment

Molecular Physics

Non-adiabatic dynamics in Molecules

Atomic and Plasma Physics Molecular Physics Condensed Phase Chemical Dynamics Coordination Chemistry Biological systems Solid state physics Nanosystems **Magnetic systems** Material science,...

Time-Resolved XANES of aqueous Iodide

Time-Resolved *EXAFS* of aqueous Iodide

Structural Information via X-Ray Absorption (EXAFS)

- Single scattering events due to higher energy photoelectrons
- Bond distances and coordination numbers from simple FT of energy spectrum

Laser-Pump X-ray-Probe Set-up

Bend Magnet Beamline 5.3.1 Advanced Light Source, Berkeley

Saes et al, Rev. Sci. Inst. 75 (2004) 24

2825 2850 2875 2900 2925 2950 2975

