atomic physics at ERL

Louis DiMauro Cornell ERL workshop June 14-15-2006

- fundamental studies of intense laser-atom interactions
- generation and application of attosecond pulses
- ultra-fast optical engineering

AMOP at the LCLS

- AMOS team located in the near-hall
- initial experimental end-station on soft x-ray beamline (0.8-2 keV)
- scientific thrust: fundamental strong-field interactions at short wavelengths

contrast: long and short wavelength strong-field physics

ponderomotive potential is everything at long wavelengths

• electron ponderomotive energy (au):

$$U_p = I/4\omega^2$$

• displacement:

 $\alpha = E/4\omega^2$

• PW/cm² titanium sapphire laser: $U_p \sim 60 \text{ eV} \& \alpha \sim 50 \text{ au}$

for LCLS @ 10³ PW/cm² U_p & α are zero! and even more zero for the ERL!!

contrast: long and short wavelength strong-field physics

• laser multiphoton ionization

x-ray multiphoton ionization

x-ray strong field experiment

needle in the haystack: coincidence measurements

• detect by correlating particle-particle events

J. Ullrich et al., JPB 30, 2917 (1997)

coincidence measurement

true-to-false ratio: $T/F = \eta_t C f / (\eta_1 C + N_1)(\eta_2 C + N_2)$ $\eta_{t,1,2}(\sigma,\theta,\epsilon) \equiv \text{detection coefficients}$ $N_{1,2} \equiv \text{noise counts}$ $C \equiv \text{average count rate}$ $f \equiv \text{repetition rate}$

• the 120 Hz operation of the LCLS makes coincidence experiments high risk, thus the initial AMOS end-station will not have this capability.

AMOS end-station: single-shot measurements

coincidence measurement

true-to-false ratio: $T/F = \eta_t C f / (\eta_1 C + N_1)(\eta_2 C + N_2)$ $\eta_{t,1,2}(\sigma,\theta,\epsilon) \equiv \text{detection coefficients}$ $N_{1,2} \equiv \text{noise counts}$ $C \equiv \text{average count rate}$ $f \equiv \text{repetition rate}$

- the 120 Hz operation of the LCLS makes coincidence experiments high risk, thus the initial AMOS end-station will not have this capability.
- the ERL does have the advantage of high duty cycle!
- does it have high enough intensity for exploring multiphoton processes?

maybe?

consider a 2-photon K-shell transition:

• estimate 2-photon cross-section, σ_2 perturbative scaling laws¹: $\sigma_2 \approx 10^{-54}$ cm⁴ s 2nd-order perturbation theory²: $\sigma_2 \approx 10^{-52}$ cm⁴ s

ERL parameters:

10⁶/shot, 100 fs, 1A 20 nm waist yields flux ~10³⁰ cm⁻² s⁻¹ (10¹⁵ W/cm²)

transition probability: $P_2 \approx 10^{-(5-7)}$

¹P. Lambropoulos and X. Tang, J. Opt. Soc. Am. B **4**, 821 (1987) ²S. A. Novikov and A. N. Hopersky, JPB **33**, 2287 (2000)

two-photon ionization

- use near resonant enhancement of σ_2
- increase number of photons/shot over average power

open the possibility of temporal metrology!

consider a 2-photon KK-shell transition: $\sigma_{KK}\approx 10^{-48}~cm^4~s$ $P_{\kappa\kappa}\approx 0.1$

coincidence investigations:

- atomic
- aligned molecules
- cluster dynamics

S.A. Novikov & A. N. Hopersky, JPB 35, L339 (2002)

x-ray-laser metrology

Observation of Laser-Assisted Auger Decay in Argon

J. M. Schins, P. Breger, and P. Agostini

Service de Recherches sur les Surfaces et l'Irradiation de la Matière. Centre d'Etudes de Saclay. 91191 Gif sur Yvette. France

R.C. Constantinescu and H.G. Muller

FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

G. Grillon, A. Antonetti, and A. Mysyrowicz

Laboratoire d'Optique Appliquée, Ecole Polytechnique-Ecole Nationale Supérieure de Techniques Avancées. 91120 Palaiseau, France (Received 5 April 1994)

