Plasma Wakefield Energy Doubler for Cornell’s ERL

Mike Downer
Department of Physics
University of Texas at Austin

Goal: $\sigma_z \sim \lambda_p$ as short as possible; $\sigma_r \ll \sigma_z$
Conventional RF acceleration: limited by material breakdown

Plasma acceleration: unlimited by material breakdown

$E_{\text{breakdown}} \sim 10^7 V/m$
$30 \text{ GeV} \Rightarrow 3 \text{ km (SLAC)}$

$E_{\text{accel}} \sim 10^{11} V/m$
$30 \text{ GeV} \Rightarrow 0.3 \text{ m}$
Quasi-monoenergetic \((E_{\text{max}} = 160 \text{ MeV}^*) \)...

recent results: \(E_{\text{max}} = 300 \text{ MeV} \) (Michigan)
1 GeV (UC-Berkeley)

\[Q \sim 1 \text{ nC} \]

\[\pm 15 \text{ MeV} \]

\[E > 70 \text{ MeV} \]

... & highly collimated \((\sigma_\perp = 0.1 \pi \text{ mm-mrad}) \)
beam can be produced

\[\sim 10 \text{ fs bunch duration} \]

convertible to 10 fs x-ray pulse
Emerging small-scale applications of LASER-plasma accelerators (0.1 - 1 GeV)

- Particle-beam-driven plasma accelerators fill a unique niche
- **HIGH ENERGY PHYSICS**
 - Plasma "afterburner", or energy doubler
- **Electrons & Protons from Laser-Plasma Accelerators**
- **Chemistry & Nutrition**
 - Radiolysis;
 - Food sterilization
- **Chemistry & Nutrition**
 - Radiolysis;
 - Food sterilization
- **Nuclear Engineering**
 - Rare, short-lived isotopes;
 - Transmutation of nuclear waste
- **Materials Science**
 - Flash γ-ray radiography of stressed materials
- **Nuclear Medicine**
 - Proton Cancer therapy;
 - \(^{11}\)C production for PET (U. Pittsburgh)
- **Structural Biology & Chemistry**
 - Fs-time resolved x-ray & electron diffraction
“Plasma Afterburner”: Booster for conventional accelerators

Chandrasekhar Joshi, *Scientific American* (Feb 2006)

Goal: double beam energy of conventional collider

Demonstrated to date (E-157,162,164, 164x):

- 27 GeV electron, 1 GeV positron energy gain in 0.1 m plasma
- > 2-fold improved focus

Main linear accelerator

Positron beam

Electron beam

Positron source

Positron return line

3 kilometers

200-MeV injector

Electron gun

50-GeV positrons

PLASMA AFTERBURNERS

50-GeV electrons

20 meters

Particle detector

SLAC / UCLA / USC collaboration
The largest accelerating gradients are realized in the densest plasmas, using the shortest drive bunches.

For optimized $k_p \sigma_z \equiv \sqrt{2}$:

$$(eE)_{linear} = 240 \frac{MeV}{m} \left(\frac{N}{4 \times 10^{10}} \right) \left(\frac{0.6}{\sigma_z [mm]} \right)^2$$

3D PIC simulations show the σ_z^{-2} dependence predicted by linear theory ($n_b < n_0$) persists into nonlinear regime ($n_b > n_0$).
For optimized bunch length $k_p\sigma_z = \sqrt{2}$, best PWFA is realized in the nonlinear “blowout” regime: $n_b >> n_0$ AND $k_p\sigma_r < 1$

Desirable properties:
- uniform accelerating field profile
- linear focusing force, independent of z

\Rightarrow drive pulse & trailing accelerating bunch propagate stably, w/ low emittance growth
Cornell ERL can pick up where SLAC left off

<table>
<thead>
<tr>
<th>Expt.</th>
<th>τ_{bunch} [fs]</th>
<th>σ_z [µm]</th>
<th>σ_r [µm]</th>
<th>n_{optimum} [1018 cm$^{-3}$]</th>
<th>E_{z}^{max} [GeV/cm]</th>
<th>L_{plasma} [cm]</th>
<th>ΔE [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAC E-157</td>
<td>2000</td>
<td>600</td>
<td>\sim50</td>
<td>0.000016</td>
<td>0.0024</td>
<td>100</td>
<td>0.24</td>
</tr>
<tr>
<td>SLAC E-164X</td>
<td>70</td>
<td>20</td>
<td>\sim20</td>
<td>0.14</td>
<td>0.5</td>
<td>3-30</td>
<td>1-15</td>
</tr>
<tr>
<td>Cornell Short-Pulse</td>
<td>50</td>
<td>15</td>
<td><5</td>
<td>0.25</td>
<td>1.0</td>
<td>1-5</td>
<td>1-5</td>
</tr>
<tr>
<td>Cornell Ultra-Short Pulse</td>
<td>20</td>
<td>6</td>
<td><2</td>
<td>1.56</td>
<td>5</td>
<td>\sim1</td>
<td>5</td>
</tr>
</tbody>
</table>

- **E-157**: long bunch, $\sigma_r/\sigma_z << 1$, low density, low gradient
- **E-164X**: short bunch, $\sigma_r/\sigma_z \approx 1$, medium density, high gradient
- **Cornell**: ultrashort bunch, $\sigma_r/\sigma_z << 1$, high density, ultrahigh gradient

THEORY SPARSE \Rightarrow EXPERIMENTS NEEDED
First Generation Experiment:
to perfect plasma wakes, we must SEE them

• Generate wakefields in dense plasma (~ 10^{18} cm$^{-3}$) using ultrashort, low emittance ERL bunches

• Measure wake structure by Frequency Domain Holography, using ~ mJ probe laser pulses synchronized w/ photocathode laser

• Compare FDH measurements with (PIC) simulations
Copper RF accelerator cavities must be precision-engineered.

Simulations show widely varying plasma wake structures...

...AND we can't even see them!

Driving Pulse

Electron density

Sinusoidal

Distorted sinusoid

Spherical “bubble”
Single-Shot “Frequency Domain Holography”

Chirped Probe is temporally long and records effect of multiple oscillations simultaneously, meaning technique is single-shot.

Ultra-intense Pump Pulse, 1 Joule, 30 fs, 800 nm
or Electron Bunch, 1 nC, 20-50 fs

Wakefield $n_e = n_0 + \delta n_e(t)$

Ionization Front

Fixed Delay, Δt

Chirped Reference Pulse (400 nm)

Chirped Probe Pulse (400 nm)

Signal HOLOGRAM

Null HOLOGRAM

Nicholas Matlis
Ph.D.’06
“Reading” the Hologram
(Full Electric Field Reconstruction)

BASIC SCHEME

1. Reconstruct spectral E-field of probe pulse from holographic spectrum

\[E_{\text{probe}}(\omega) = |E(\omega)| \, e^{-i\phi(\omega)} \]

2. Fourier Transform to the time-domain to recover temporal phase

\[E_{\text{probe}}(t) = |E(t)| \, e^{-i\delta\phi(t)} \]

3. Calculate electron density from extracted temporal phase

\[\delta n_e(t) \]
Holographic snapshot of an ionization front

- $I_{pump} = 10^{16}$ W/cm2
- single shot measurement

He$^2^+$

He$^+$

r (µm)

t (fs)

-500
500
Holographic snapshots of laser wakefields

\[P \sim 10 \text{ TW}, \ I \sim 10^{18} \text{ W/cm}^2 \]

\[d) \]

- Electron Density [cm\(^{-3}\)]
- Plasma Period [fs]

- \[6e18 \] to \[6e18 \]
- \[0e18 \] to \[6e18 \]

- \[E_z^{\text{max}} \sim 3 \times 10^{10} \text{ V/m} \]
Strong wakes have curved wavefronts

\[P \sim 30 \text{ TW}, \quad I \sim 3 \times 10^{18} \text{ W/cm}^2 \]

\[n_e = 2.17 \times 10^{18} \text{ cm}^{-3} \]

\[\gamma \approx 1 \]

\[\omega_p = \left[\frac{n_e e^2}{\varepsilon_0 m_e} \right]^{1/2} \]

\[\gamma \approx 1.5 \]

Importance of wavefront curvature:

- collimates e⁻ beam
- threshold of wave-breaking & electron injection
- \(E_{z, max} \approx 1.5 \times 10^{11} \text{ V/m} \)

Plasma wake physics to observe by FDH

- PWF microstructure vs. drive parameters (σ_z/σ_r, N) in the high density blowout regime, where theory is sparse and simulations problematic.
- Effect of beam loading & drive bunch depletion on wake structure
- Onset of wave breaking & electron injection from background plasma
- Onset of hosing instability

PWF-accelerated beam properties to measure

- energy
- energy spread
- transverse emittance
- bunch charge
- bunch length

Characterize x-rays emitted by...

- Re-injection into ERL undulators
- Betatron oscillations in ion column [e.g. 10^7 photons @ 6.4 keV in .01° cone]1
- Thomson scatter by counter-propagating intense laser pulse[10^8 photons@ 1keV]2

1 SLAC E-157 2 T Phuoc, PRL 90, 075002 (2003), laser wakefield
Summary

• Plasma wakefield boosters can potentially add flexibility to the Cornell ERL at low cost
 - optional increased energy
 - auxiliary ultrashort hard x-ray source

• R&D using visualization methods such as Frequency Domain Holography, is needed to perfect them

• They may also provide low-cost upgrades for HEP accelerators
The Cornell ERL is well qualified for 2nd generation plasma afterburner accelerator experiments

- basic physics
- accelerator development

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SLAC E-164X</th>
<th>Cornell ERL</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_{\text{bunch}})</td>
<td>~70 fs</td>
<td>20-50 fs</td>
<td>resonantly drive WF in dense (n_e > 10^{17} \text{ cm}^{-3}) plasma (\Rightarrow) high accelerating gradient (E_z > 100 \text{ GeV/m})</td>
</tr>
<tr>
<td>transverse emittance</td>
<td>60 (\times) 15 mm-mrad</td>
<td>5 mm-mrad</td>
<td>tight focus (\sigma_r < \lambda_p \approx 10 \mu \text{m}) { "blowout" regime: (n_{\text{bunch}} > n_e) \bullet (\sigma_r), (\lambda_p), (\sigma_r < \lambda_p) } \bullet (n_{\text{bunch}} > n_e) \bullet (\sigma_r), (\lambda_p), (\sigma_r < \lambda_p) \bullet (n_{\text{bunch}} > n_e) \bullet (\sigma_r), (\lambda_p), (\sigma_r < \lambda_p)</td>
</tr>
<tr>
<td>bunch charge</td>
<td>~ 5 nC</td>
<td>~ 1 nC</td>
<td>\bullet \text{high S/N in physics experiments} \bullet \text{high average current from plasma WF accelerator}</td>
</tr>
<tr>
<td>repetition rate</td>
<td>10 Hz</td>
<td>~ MHz</td>
<td></td>
</tr>
</tbody>
</table>
Counter-propagating Thomson scatter: tunable, fs X-ray pulses on a table-top

Ta Phuoc et al., PRL 90, 075002 (2003)

Counter-propagating Laser

LWFA e⁻ beam
(≈ tens MeV)

μm

Undulator

X-ray beam: \(\lambda = \frac{\lambda_{\text{L}}}{4\gamma^2} \)

X-ray beam: \(\lambda = \frac{\lambda_{\text{und}}}{2\gamma^2} \)