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Demands on Optical Timing Distribution

4-th Generation Light Sources demand increasingly precise timing 

today << 100 fs, in 3 years: < 10fs , in 6 years: < 1fs,  ?

Scalability to these levels should be possible!

Must serve multiple locations separated by up to 1-5 km distances.

This is beyond what a direct RF-distribution system (coaxial cables) can 
handle

- thermal drifts of coaxial cables
- drifts of microwave mixers
- etc.

It will lead to a considerable reduction in cost and space!
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Synchronization System Layout
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Why Optical Pulses (Mode-locked Lasers)?

RF is encoded in pulse repetition rate, every harmonic can be extracted at 
the end station.
Suppress Brillouin scattering and undesired reflections.
Optical cross correlation can be used for link stabilization or for optical-to-
optical synchronization of other lasers
Pulses can be directly used to seed amplifiers at end stations.
Group delay is directly stabilized, not phase delay as would be the case in 
an interferometric link stabilization. (For L=1km, and 10C, τphase-τgroup> 10fs, 
Polarization Mode Dispersion: 0.01-0.1ps/Sqrt[km]) 

frequency

… ...

fR 2.fR N.fR

TR = 1/fR

time



6

Highly Stable Microwave Oscillator
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Microwave Master Clocks
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Optical Master Oscillator
A master mode-locked laser producing a very stable pulse train
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Er-Fiber Laser

Stretched-pulse Er-fiber Laser: Tamura et al. OL 18, 1080 (1993).
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Phase Noise (Timing Jitter) Measurements

Noise floor limited by photo detection
Theoretical noise limit  <1 fs

Agilent Signal Analyzer 5052a @ 1GHz
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System Test in Accelerator Environment

Test done at MIT Bates Laboratory:
Locked EDFL to Bates master oscillator
Transmitted pulses through 400 meter partially temperature stab.
fiber link
Close loop on fiber length feedback

~ 500 meters
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RF-Transmission over Stabilized Fiber Link
• Passive temperature  

stabilization of 500 m

• RF feedback for   
fiber link

• EDFL locked to         
2.856 GHz Bates 
master oscillator

1
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Jitter: Timing Stabilized Fiber Link

Fiber link extremely stable without closing loop (60 fs for 0.1 Hz…5 kHz)
Closing feedback loop reduces noise (12 fs for 0.1 Hz .. 5kHz)
No significant noise added at higher frequencies

(2-4) jitter: < 22 fs
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Phase Noise (Jitter) of Transmitted Signal

Jitter between Bates MO and optical master laser ~30 fs (10 Hz..2 kHz) 
Jitter added by Link < 22fs
Total jitter added (1- 4 ) < 52 fs

4

1
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How to improve on these results 
and make it long term stable?

Transition from microwave to 
optical techniques
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Optical to RF-Conversion
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Direct Extraction of RF from Pulse Train

Optical Pulse Train
(time domain)

TR = 1/fR

f
… ..

fR 2fR nfR (n+1)fR

BPF
Photodiode

f
nfR

t

TR/n

LNA

Amplitude-to-phase conversion introduces excess timing jitter.
E.N. Ivanov et al., IEEE JSTQE 9, 1059 (2003)

Phase
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Amplitude to Phase Conversion Measurement

Typical AM-to-PM: 
1 – 10 ps/mW

RIN~0.04% (10kHz-22MHz)
Δtexcess~ 5-20 fs

Limitations in direct photodetection
1. Amplitude-to-phase conversion 
2. Limited SNR by small-area high speed detector
3. High temperature sensitivity of photodiode

Conversion of optical signal into electronic signal is the major
bottleneck in signal properties (noise, stability, and power).

Consistent with NIST result
Bartels et al, OL 30, 667 (2005).
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Optical/Electrical Phase-Locked Loop (PLL)

Implementation of optical-RF phase detectors
for high-power, low-jitter and drift-free RF-signal regeneration 

Can we regenerate a high-power, low-jitter RF-signal 
whose phase is locked long term stable to the optical pulse train?  
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Balanced Optical-RF Phase Detector

• Capable of driving high-power VCO  High-power regenerated RF-signal
• Scalable phase detection sensitivity  Low-jitter synchronization
• Fiber-based “balanced” scheme        Long-term drift-free operation 
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Demonstration Experiment
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In-Loop Phase Noise Measurement

Residual timing jitter = 3 fs ± 0.2 fs (1Hz-10MHz)
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Scalability in Phase Detection Sensitivity
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Scalable Phase Detection Sensitivity

Shot Noise Floor Scalability

Pavg Optical power circulating Sagnac-loop 10 mW

Φ0 Phase modulation depth from VCO signal 0.4 rad

Φm Phase modulation depth from synchronous signal 0.2 rad

R Photodetector responsivity 0.9 A/W
q Electron charge 1.6x10-19 C

Shot noise limited jitter = 0.5 fs (currently limited by other noise sources)
Scalable by increasing optical power and RF modulation depth
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Optical to Optical Synchronization
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Balanced Optical Cross-Correlation
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Measured 0.3 fs jitter in 10mHz to 2.3 MHz
T. Schibli et al, Opt. Lett. 28, 947, 2003.
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Long-Term Locking Between Two Lasers
(Out of Loop Measurements)
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Timing stabilized fiber links
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coarse
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OC

Faraday
Mirror<100 fs

ultimately < 1 fs

K. Holman, et al. Opt. Lett. 30, 1225 (2005);  < 40 fs in 1Hz-100kHz

Assuming no fiber length fluctuations faster than T=2nL/c.
L = 1 km, n = 1.5   =>  T=1 µs,    fmax ~ 100 kHz
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Summary
Ultrashort pulse trains from mode-locked lasers have excellent 
phase/timing noise properties.

They can be used as optical master oscillators 

Optical/Electrical PLLs: Balanced optical-RF phase detectors are 
proposed for femtosecond and potentially sub-femtosecond
optical to RF-synchronization. 

Optical/Optical Synchronization: Based on balanced optical cross-
correlation. Long term stable sub-femtosecond precision is 
already achieved. 

Together with timing stabilized fiber links a (sub-) femtosecond
timing distribution and synchronization system for 4th generation 
light sources can be accomplished.
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