

Large Scale Femtosecond Timing Distribution and RF-Synchronization

Franz X. Kärtner, Jungwon Kim, Jeff Chen, F. Ömer Ilday, Massachusetts Institute of Technology, Cambridge MA, USA

Axel Winter, Frank Ludwig Universität Hamburg & DESY, Hamburg, Germany

Supported by DESY, FERMI-Trieste, MIT-Bates Laboratory & ONR

4th Gen. Light Sources: XFEL

Max timing jitter in each section Δt : 10 fs ~ 3 μ m

Demands on Optical Timing Distribution

4-th Generation Light Sources demand increasingly precise timing

today << 100 fs, in 3 years: < 10fs , in 6 years: < 1fs, ?

 \rightarrow Scalability to these levels should be possible!

- Must serve multiple locations separated by up to 1-5 km distances.
- This is beyond what a direct RF-distribution system (coaxial cables) can handle
 - thermal drifts of coaxial cables
 - drifts of microwave mixers
 - etc.
- It will lead to a considerable reduction in cost and space!

Synchronization System Layout

Why Optical Pulses (Mode-locked Lasers)?

- RF is encoded in pulse repetition rate, every harmonic can be extracted at the end station.
- Suppress Brillouin scattering and undesired reflections.
- Optical cross correlation can be used for link stabilization or for optical-tooptical synchronization of other lasers
- Pulses can be directly used to seed amplifiers at end stations.
- Group delay is directly stabilized, not phase delay as would be the case in an interferometric link stabilization. (For L=1km, and 1^oC, τ_{phase}-τ_{group}> 10fs, Polarization Mode Dispersion: 0.01-0.1ps/Sqrt[km])

Highly Stable Microwave Oscillator

Microwave Master Clocks

Typical Phase Noise of PSI SLCO-BCS at 10.240 GHz

Optical Master Oscillator

A master mode-locked laser producing a very stable pulse train

Er-Fiber Laser

Stretched-pulse Er-fiber Laser: Tamura et al. OL 18, 1080 (1993).

Phase Noise (Timing Jitter) Measurements

- Noise floor limited by photo detection
- Theoretical noise limit <1 fs</p>

System Test in Accelerator Environment

- Test done at MIT Bates Laboratory:
 - Locked EDFL to Bates master oscillator
 - Transmitted pulses through 400 meter partially temperature stab. fiber link
 - Close loop on fiber length feedback

RF-Transmission over Stabilized Fiber Link

Jitter: Timing Stabilized Fiber Link

- Fiber link extremely stable without closing loop (60 fs for 0.1 Hz...5 kHz)
- Closing feedback loop reduces noise (12 fs for 0.1 Hz .. 5kHz)
- No significant noise added at higher frequencies

(2-4) jitter: < 22 fs

Phase Noise (Jitter) of Transmitted Signal

- Jitter between Bates MO and optical master laser ~30 fs (10 Hz..2 kHz)
- Jitter added by Link < 22fs</p>
- Total jitter added (1- 4) < 52 fs</p>

How to improve on these results and make it long term stable?

Transition from microwave to optical techniques

Optical to RF-Conversion

Direct Extraction of RF from Pulse Train

Amplitude to Phase Conversion Measurement

Typical AM-to-PM: 1 – 10 ps/mW

Consistent with NIST result Bartels et al, OL **30**, 667 (2005).

RIN~0.04% (10kHz-22MHz) $\rightarrow \Delta t_{excess} \sim 5-20 \text{ fs}$

Limitations in direct photodetection

- 1. Amplitude-to-phase conversion
- 2. Limited SNR by small-area high speed detector
- 3. High temperature sensitivity of photodiode

Conversion of optical signal into electronic signal is the major bottleneck in signal properties (noise, stability, and power).

Optical/Electrical Phase-Locked Loop (PLL)

Can we regenerate a high-power, low-jitter RF-signal whose phase is locked long term stable to the optical pulse train?

Implementation of optical-RF phase detectors for high-power, low-jitter and drift-free RF-signal regeneration

Sagnac-Loop for Electro-Optic Sampling

Balanced Optical-RF Phase Detector

- Capable of driving high-power VCO \rightarrow High-power regenerated RF-signal
- Scalable phase detection sensitivity \rightarrow Low-jitter synchronization
- Fiber-based "balanced" scheme

Demonstration Experiment

In-Loop Phase Noise Measurement

Scalability in Phase Detection Sensitivity

Scalable Phase Detection Sensitivity

$$K_d = \frac{V_d}{\theta_e} \propto P_{avg} \Phi_0 \Phi_m$$

Shot Noise Floor Scalability

$$S_{\varphi,shot} = \frac{\langle \overline{V}_{shot,mix}^2 \rangle}{K_d^2 / N^2} = \frac{8q}{RP_{avg}\Phi_0^2}$$

P_{avg}	Optical power circulating Sagnac-loop	10 mW
Φ ₀	Phase modulation depth from VCO signal	0.4 rad
Φ _m	Phase modulation depth from synchronous signal	0.2 rad
R	Photodetector responsivity	0.9 A/W
q	Electron charge	1.6x10 ⁻¹⁹ C
Shot noise limited jitter = 0.5 fs (currently limited by other noise sources)		
ightarrow Scalable by increasing optical power and RF modulation depth		

Optical to Optical Synchronization

Balanced Optical Cross-Correlation

Measured 0.3 fs jitter in 10mHz to 2.3 MHz T. Schibli et al, Opt. Lett. **28**, 947, 2003.

Long-Term Locking Between Two Lasers (Out of Loop Measurements)

Timing stabilized fiber links

Timing-Stabilized Fiber Links

Assuming no fiber length fluctuations faster than T=2nL/c. L = 1 km, n = 1.5 => T=1 μ s, f_{max} ~ 100 kHz

K. Holman, et al. Opt. Lett. 30, 1225 (2005); < 40 fs in 1Hz-100kHz

Summary

- Ultrashort pulse trains from mode-locked lasers have excellent phase/timing noise properties.
- They can be used as optical master oscillators
- Optical/Electrical PLLs: Balanced optical-RF phase detectors are proposed for femtosecond and potentially sub-femtosecond optical to RF-synchronization.
- Optical/Optical Synchronization: Based on balanced optical crosscorrelation. Long term stable sub-femtosecond precision is already achieved.
- Together with timing stabilized fiber links a (sub-) femtosecond timing distribution and synchronization system for 4th generation light sources can be accomplished.

