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Demands on Optical Timing Distribution

= 4-th Generation Light Sources demand increasingly precise timing
today << 100 fs, in 3 years: < 10fs , in 6 years: < 1fs, ?

-> Scalability to these levels should be possible!
= Must serve multiple locations separated by up to 1-5 km distances.

= This is beyond what a direct RF-distribution system (coaxial cables) can
handle

- thermal drifts of coaxial cables
- drifts of microwave mixers
- etc.

It will lead to a considerable reduction in cost and space!
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Synchronization System Layout

Low-noise
microwave
oscillator

low-bandwidth
lock

Low jitter

modelocked laser

fiber
couplers

stabilized
fibers

Optical to optical
sync module

Optical to RF
sync module

i

AT

Laser

Optical to RF
sync module
l\ low-level RF

>

www.rle.mit.edu



Why Optical Pulses (Mode-locked Lasers)?

Tr = 1/fr

ﬂ I”k 1\ I\ [

_’ fR 2.frR N.fR
time frequency

= RF is encoded in pulse repetition rate, every harmonic can be extracted at
the end station.

= Suppress Brillouin scattering and undesired reflections.

= QOptical cross correlation can be used for link stabilization or for optical-to-
optical synchronization of other lasers

= Pulses can be directly used to seed amplifiers at end stations.

= Group delay is directly stabilized, not phase delay as would be the case in
an interferometric link stabilization. (For L=1km, and 1°C, t.sc-Tgroup™ 10fs,
Polarization Mode Dispersion: 0.01-0.1ps/Sqrt[km])
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Highly Stable Microwave Oscillator
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Microwave Master Clocks

Typical Phase Noise of PSI SLCO-BCS at 10.240 GHz
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Optical Master Oscillator

A master mode-locked laser producing a very stable pulse train
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Er-Fiber Laser

Stretched-pulse Er-fiber Laser: Tamura et al. OL 18, 1080 (1993).
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Phase Noise (Timing Jitter) Measurements

i Agilent Signal Analyzer 5052a @ 1GHz
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= Noise floor limited by photo detection
= Theoretical noise limit <1 fs
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System Test in Accelerator Environment

= Test done at MIT Bates Laboratory:
= Locked EDFL to Bates master oscillator
= Transmitted pulses through 400 meter partially temperature stab.
fiber link
= Close loop on fiber length feedback
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RF-Transmission over Stabilized Fiber Link
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Jitter: Timing Stabilized Fiber Link
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= Fiber link extremely stable without closing loop (60 fs for 0.1 Hz...5 kHz)
= Closing feedback loop reduces noise (12 fs for 0.1 Hz .. 5kHz)
= No significant noise added at higher frequencies

(2-4) jitter: < 22 fs
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Phase Noise (Jitter) of Transmitted Signal

-20- — Bates MO
T —— EDFL locked to Bates MO

——— EDFL not locked to Bates MO
after 500m transmission

10° 10' 10* 10° 10* 10° 10° 10
frequency (Hz)
= Jitter between Bates MO and optical master laser ~30 fs (10 Hz..2 kHz)

= Jitter added by Link < 22fs
= Total jitter added (1-4) <52 fs
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How to improve on these results
and make it long term stable?

Transition from microwave to
optical techniques
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Optical to RF-Conversion
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Direct Extraction of RF from Pulse Train

TrR/N

TR = 1/fr @é __o t

A EE—

[\ p I\ K Photodiode

[ 4]

frR 2frR nfr (n+1

Optical Pulse Train
(time domain) R

Amplitude-to-phase conversion introduces excess timing jitter.
o E.N. lvanov et al., IEEE JSTQE 9, 1059 (2003)
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Amplitude to Phase Conversion Measurement

Typical AM-to-PM:
1-10 ps/mW

Consistent with NIST result
Bartels et al, OL 30, 667 (2005).

20 ~

6 V bias
4.24 psimW slope

—
o
1

time difference (ps)

o
1

12 V bias
1.85 ps/mW slope

RIN~0.04% (10kHz-22MHz)
2> At ~ 5-20 fs

excess

optical power (mW)
Limitations in direct photodetection
1.  Amplitude-to-phase conversion

2. Limited SNR by small-area high speed detector
3. High temperature sensitivity of photodiode

Conversion of optical signal into electronic signal is the major
bottleneck in signal properties (noise, stability, and power).
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Optical/Electrical Phase-Locked Loop (PLL)

Can we regenerate a high-power, low-jitter RF-signal
whose phase is locked long term stable to the optical pulse train?

Optical input
(Reference) A A A Loop Filter veo
Optical-RF [ N @ ________ e .
Phase Detector |Phase error . Regenerated
output . RF-Output

v

RF input

Implementation of optical-RF phase detectors
for high-power, low-jitter and drift-free RF-signal regeneration
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Sagnac-Loop for Electro-Optic Sampling
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Balanced Optical-RF Phase Detector
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Balanced Optical-RF Phase Detector

« Capable of driving high-power VCO - High-power regenerated RF-signal
» Scalable phase detection sensitivity = Low-jitter synchronization
* Fiber-based “balanced” scheme - Long-term drift-free operation
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Demonstration Experiment
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In-Loop Phase Noise Measurement
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Scalability in Phase Detection Sensitivity

Scalable Phase Detection Sensitivity

Kd — \é_d oL I:)angDO(Dm
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Shot Noise Floor Scalability
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P | Optical power circulating Sagnac-loop 10 mW
®, | Phase modulation depth from VCO signal 0.4 rad
@, | Phase modulation depth from synchronous signal 0.2 rad
R Photodetector responsivity 0.9 A/\W
q | Electron charge 1.6x10-1°9 C
Shot noise limited jitter = 0.5 fs (currently limited by other noise sources)
—> Scalable by increasing optical power and RF modulation depth
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Optical to Optical Synchronization
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Balanced Optical Cross-Correlation
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Measured 0.3 fs jitter in 10mHz to 2.3 MHz

- T. Schibli et al, Opt. Lett. 28, 947, 2003.
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Long-Term Locking Between Two Lasers
(Out of Loop Measurements)
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Timing stabilized fiber links
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Timing-Stabilized Fiber Links

PZT-based
fiber _
50:50 stretcher SMF link

. 1-5km
4/__>\ —
A
OC
{ | .

coarse Faraday
<100 fs RF-lock Mirror
ultimately < 1 fs FC

Assuming no fiber length fluctuations faster than T=2nL/c.
L=1km,n=15 => T=1ys, f ,, ~ 100kHz

m

K. Holman, et al. Opt. Lett. 30, 1225 (2005); <40 fs in 1Hz-100kHz
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Summary

= Ultrashort pulse trains from mode-locked lasers have excellent
phase/timing noise properties.

= They can be used as optical master oscillators

= Optical/Electrical PLLs: Balanced optical-RF phase detectors are
proposed for femtosecond and potentially sub-femtosecond
optical to RF-synchronization.

= Optical/Optical Synchronization: Based on balanced optical cross-
correlation. Long term stable sub-femtosecond precision is
already achieved.

= Together with timing stabilized fiber links a (sub-) femtosecond
timing distribution and synchronization system for 4th generation
light sources can be accomplished.
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