

Cornell University

Mechanisms for Ultrafast Generation of Coherent Phonons, Polaritons and Spin Excitations

R. Merlin University of Michigan

Scientific Potential of High Repetition-Rate, Ultra-short Pulse ERL X-ray Source

VIBRATIONS (PHONONS): COHERENT AND SQUEEZED STATES

POLARITONS (LIGHT-TO COUPLED MODES)

SPIN-FLIP EXCITATIONS, MAGNONS, SPIN SQUEEZING, 2DEG SPIN- DENSITY FLUCTUATIONS

PLASMONS, 2DEG CHARGE-DENSITY EXCITATIONS

SUPERCONDUCTING GAP EXCITATIONS

Coherent Fluctuations: Charge-Density vs. Spin-Density

Charge-Density vs. Spin-Density Oscillations

J. Bao, L. Pfeiffer, K. West and RM, Phys. Rev. Lett. 92 236601 (2004)

D. Wang et al., unpublished

Dependence of the spin wave frequency on field for different directions

$$\omega = \gamma \sqrt{(H\cos(\varphi - \varphi_H) + \frac{2K_4}{m}\cos 4\varphi + Dk^2)(H\cos(\varphi - \varphi_H) + 4\pi m + \frac{K_4}{2m}(3 + 4\cos 4\varphi) - \frac{2K_2}{m} + Dk^2)}$$
Angle between the magnetization and applied field

MAGNON SQUEEZING

Spontaneous RS

COHERENT POLARITONS AND CHERENKOV RADIATION

Propagation Effects PLANE OF DIPOLES Science **291**, 627 (2001)

POINT DIPOLE Physica B, **316-317**, 55 (2002)

ZnTe: v = 0.31c (subluminal)

LiTaO₃: V = 3.07C(superluminal)

CHERENKOV RADIATION J. Wahlstrand and RM, Phys. Rev. B 68, 054301 (2003).

Anomalous First-to-Zero Sound Crossover in La_{1-x}Ca_xMnO₃

Propagating and Surface Avoiding Modes

M. Trigo et al., unpublished

Propagating and Surface Avoiding Modes

WHAT ARE THE MECHANI SMS?

WHAT ARE THE MECHANISMS? DETECTION vs. GENERATION

 $n \rightarrow n + \Delta n \quad (\Delta n \propto Q, Q^2, Q^3, ...)$

LASER-INDUCED IMPULSIVE EXCITATION OF ATOMS

IMPULSIVE STIMULATED RAMAN SCATTERING

ABOVE THE GAP: DI SPLACI VE EXCITATION

$$F \propto \left\langle C_b^+ C_{b-q} \right\rangle$$

 $\tau \gg \Omega^{-1}$

$$F(\Omega) \propto \left[\frac{d \operatorname{Re}(\varepsilon)}{d \omega} + 2i \operatorname{Im} \varepsilon / \Omega\right]_{-\infty}^{+\infty} e^{i\Omega t} |E(t)|^2 dt$$

TWO RAMAN TENSORS: T. Stevens, J. Kuhl and RM

Phys. Rev. B 65, 144304 (2002)

COHERENT PHONON FIELD SQUEEZED PHONON FIELD

DECP vs. COHERENT RAMAN SCATTERING

$$\mathcal{F}_{DECP} \propto \sum_{b} \left\langle \mathcal{C}_{b}^{+} \mathcal{C}_{b}
ight
angle$$

$$F_{RS} \propto \sum_{b} \left\langle C_{b}^{+} C_{b-q} \right\rangle$$

A-type modes

Long-lived Raman coherence

All Raman-allowed modes

Good (?) ERLIdea

Time Resolved EXAFS: Impurity Mode Identification

FIG. 2. Polarized micro-Raman spectra in the x(yy)x' scattering configuration for undoped, Ga, Al, Sb, and Fe doped ZnO thin films on sapphire. The ZnO:Ga* film was grown in N₂O atmosphere, all other samples were grown in O₂ atmosphere. Triangles denote additional modes.

APPLIED PHYSICS LETTERS

VOLUME 83, NUMBER 10

8 SEPTEMBER 2003

Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li

C. Bundesmann, $^{a)}$ N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, $^{b)}$ M. Lorenz, and M. Grundmann

Silicon K-shell: 1.84 keV

Gallium K-shell: 10.4 keV

Time Resolved EXAFS: Impurity Mode Identification

