Mapping Atomic Structure at Epitaxial Interfaces

Roy Clarke, University of Michigan, Ann Arbor, MI

Opportunities for interface science at the ERL

royc@umich.edu

ERL X-ray Science Workshop: Almost Impossible Materials Science, June 16, 2006

Outline

At nanoscale, interfaces are everything

• Possible now:

-3D maps of static thin-film/interface structure with atomic resolution

-Some dynamic information, including strain, phonons, domain walls...

• Opportunities for ERL:

- ultrafast imaging at atomic scale
- tracking growth, deposition processes
- local probe of nano-structures

DeCamp, Reis et al. Nature, PRL

Van der Merwe layer-by-layer growth

Surface nanopatterning

Epitaxial Nanostructures (example: "6.1Å system")

No-common-atom superlattices

InAs-on-GaSb:

...Sb-Ga-Sb-Ga-As In-As-In-As...

<u>GaSb-on-InAs:</u> ("inverted interface"):

...As-In-As-In-Sb-Ga-Sb-Ga...

Band-gap tunability 0.2eV to 1.3 eV for IR applications

- but difficult to control growth

Nosho, Barvosa-Carter, Yang, Bennett, Whitman Surf. Sci. 465, 361 (2000).

Band-gap tuning

Epitaxy and 2D periodicity

2D periodic structure coherent with the substrate (aka "epitaxial film")

Coherent Bragg Rod Analysis (COBRA)

-31L Bragg Rod Profile for sample 811 (InAs on GaSb)

COBRA MAP of Group III (In,Ga) plane

9ML of GaSb on InAs

• very coherent interface

surface roughness ~ 3ML

Composition profiles determined from COBRA electron density maps

Assumes quaternary system:

 $Ga_m In_{1-m} Sb_n As_{1-n}$

GaSb on InAs lattice spacing

(Determined from Gaussian fit to electron density peaks)

Ferroelectric nanostructure

Jiang et al., APL 74, 2851 (1999).

erroelectrics: Superlattice- Strain Effect

 $[(BaTiO_3)_6/(SrTiO_3)_5]_{20}$

COBRA MAP OF FERROELECTRIC INTERFACE

Sample made by MOCVD, Stephenson group –in-situ facility, APS

COBRA results on ultrathin film of PbTiO₃

Fong, Cionca, Yacoby, Stephenson, Eastman, Fuoss, Streiffer, Thompson, Clarke, Pindak, Stern, PRB 2005

Interface polarization reversal ?

Smaller and faster \rightarrow nm : fs

High rep-rate and tunability are great features!!

ERL characteristics for in-situ materials dynamics studies

		Short-Term Goals		Long-Term Goals		
Modes:	(A) Flux	(B) High- Coherence	(C) Short- Pulse	(D) Ultra High- Coherence	(E) Ultra Short- Pulsc	Unit
Energy	5	5	5	5	5	GeV
Macropulse current	100	25	1	100	1	mA
Bunch charge	77	19	1000	77	10000	pC
Repetition rate	1300	1300	1	1300	0.1	MHz
Transverse emittance (norm. rms)	0.3	0.08	5.0	0.06	5.0	mm.mrad
Transverse emittance (geometric at 5GeV)	31	8.2	511	6.1	511	pm
Bunch length (rms)	2000	2000	50	2000	20	fsec
intrabunch Energy spread (fractional;rms)	2E-4	2E-4	3E-3	2E-4	3E-3	
Beam power	500	125	5	500	5	MW
Beam loss	s 1	<1	< 1	< 1	< 1	μA

kW average power (fiber) lasers on the horizon (mJ/pulse at 1MHz)

USING EVERY X-RAY PHOTON

Ultrafast Laser Deposition

Plasma Plume Imaging & Spectroscopy

Co nano-disks on Si

200nm

spin vortex state

35kx

Probing the initial stages of ultrafast ablation

Snapshots of MDCASK simulation of the ablation of Cu (From Gilmer et al., unpublished research)

Timescale of ERL matches simulation Laser pump – x-ray (diffraction/XAFS) at high rep rates

Detectors!

- Investment lags source development
- Need fast, gated area detectors –badly!
 - efficient direct detection PADs
 - x2 from cross-scan, more from // channels
 - $\leq n \sec gating$
 - 10⁵ dynamic range
 - multiple read architecture
 - modular

Summary

• ERL source could enable dynamic imaging of atomic/spin motions associated with collective phenomena (e.g. fast switching with laser impulse)

 deposition processes also, esp. for nanostructures

 combination of fast rep-rate and short pulse matches well to laser pump development (high average power fiber lasers)

film x₀ Substrate

Real space

Reciprocal space

This choice of origin satisfies the COBRA approximation: slowly varying U(q)

MBE Growth and In-situ Analysis

Integrated MBE/RHEED/STM/MOS capabilities:

RHEED: Realtime surface structure characterization STM: surface morphology, roughness, coarsening

<u>MOSS</u>: curvature mapping gives mismatch strain information.

Typical Growth Conditions

- GaSb on InAs T_{sub}= 450C
- GaSb 9ML MBE (30sec)
- Ga/Sb 1ML/1ML MEE (3s/2s)
- Sb 1ML MEE (2s)
- In 1ML MEE (2s)

InAs 0.2 micron

Combined MBE growth chamber and STM chamber. Mirecki Millunchick Lab, University of Michigan

In-situ: k-Space Associates KSA 400 and MOSS

Sample 814 GaSb on InAs

Accumulation of As at interface

Exp ratio ~ 1 Ideal = 0.65