Almost-Impossible Materials Science by 3D Diffraction Microscopy

Ian McNulty

BESSY / Advanced Photon Source

Outline

Motivation

Resolution and 3D

Coherent methods

The need for speed

Future directions

The challenge

- The capability to image structure in 3D at the molecular scale and beyond is essential to solve many problems in materials science
- Electron microscopes, STMs, AFMs, etc., are superb tools but are limited to surfaces and thin films
- X-ray crystallography is not, but depends on crystalline samples
- Lenses limit the resolution of conventional x-ray microscopes, and 3D methods are impractically slow for many experiments.

How can we reach beyond these limits?

We need better tools to study ordering

Figure 1. Typical length scales and dimensionality of disorder in some classes of materials. The disorder in most materials is usually defined relative to a lattice. Glasses are an exception, where short range order is determined by nearest neighbour bond distances and interbond angles.

M. Treacy et al., Rep. Prog. Phys. 68, 2899 (2005)

BESSY

McNulty

Almost-Impossible Materials Science

Aerogels form interconnected networks

A.. Roshi, S. Barjami, G. lannacchione (Worchester Polytechnic Inst.)

Aerosils and gels form long, necklacelike, chains that interconnect randomly and percolate with fractal dimensions. Dynamics and fluctuations are modified by phase transitions in surrounding matrix (e.g., smecticphase liquid crystal)

McNulty

Materials Science and Engineering

Block Copolymer directed Hybrids in Bulk

TEM

R. Ulrich, A. Du Chesne, M. Templin, U. Wiesner, Adv. Mater. 11, 141 (1999)

Cr antiferromagnetic domain evolution

Diffraction contrast shows regions with different magnetic order

Spin-flip transition T_{SF} is non-uniform within domain

P. Evans et al., *Science* 295, 1042 (2002) Need brilliance to get intense, small spot

Modes:	Short-Term Goals			Long-Term Goals		
	(A) Flux	(B) High- Coherence	(C) Short- Pulse	(D) Ultra High- Coherence	(E) Ultra Short- Pulse	Unit
Energy	5	5	5	5	5	GeV
Macropulse current	100	25	1	100	1	mA
Bunch charge	77	19	1000	77	10000	рС
Repetition rate	1300	1300	1	1300	0.1	MHz
Transverse emittance (norm. rms)	0.3	0.08	5.0	0.06	5.0	mm.mrad
Transverse emittance (geometric at 5GeV)	31	8.2	511	6.1	511	pm
Bunch length (rms)	2000	2000	50	2000	20	fsec
intrabunch Energy spread (fractional;rms)	2E-4	2E-4	3E-3	2E-4	3E-3	
Beam power	500	125	5	500	5	MW
Beam loss	< 1	< 1	< 1	< 1	< 1	μA

Image formation as a scattering process

Ewald sphere (2D) defined by conservation of momentum and limit of spatial frequencies in the object defined by object composition. Only spatial frequencies on the Ewald sphere are accessible to the imaging process, limiting attainable resolution.

Almost-Impossible Materials Science

16 June 2006

BESSY

Diffraction limits to resolution

McNulty

Amost-Impossible Materials Science

$$R \approx 0.61 \lambda / NA$$
 DOF ≈ 1.22 λ / (NA)² = 2 R² / (0.61λ)

 $|n| \approx 1 \Rightarrow NA << 1 \Rightarrow DOF << R$

Synthesize larger NA with multiple views

Cannot improve R, only DOF by tomography

1 Record many projections through sample over wide angular range. Projections at angles *q* contain:

$$I(x, y, \theta) = I_0 e^{-\int \mu_{\theta}(x', y', z') dz'}$$

2 Reconstruct 3D sample density from suite S of projections

Invert
$$S\{I(x, y, \theta)\} \Rightarrow \mu(x, y, z)$$

X-ray microscopy methods

Scanning x-ray microscopy/tomography

BESSY

Scanning nanotomography of chips

the second seco

Scanning transmission x-ray micrograph (1830 eV) of a Cu/W/Si test device, showing interconnects and vias.

Bayesian reconstruction reconstruction of 13 STXM projections (±69°, 1573 eV) through twolevel Al/W/Si test object. Al interconnects are joined by W vias. Two FIB markers are at top.

Z. Levine et al., Appl. Phys. Lett. 74, 150 (1999)

Almost-Impossible Materials Science

Normal-incidence scan of interconnect showing electromigration void detail.

Almost-Impossible Materials Science

Bayesian reconstruction of ragged end of void

Z. Levine, et al., J. Appl. Phys. 87, 4483 (2000)

Detailed study of electromigration void

Quantitative phase tomography

- Defocus series (a, b, c) and phase (d) of a silicon AFM tip
- Quantitative 3D reconstructions of real part of refractive index from ±70° tomographic projections through tip
- Calculated δ = 5.1 x 10⁻⁵ Measured δ = 5.0 ± 0.5 x 10⁻⁵

P. McMahon et al., Opt. Commun. 217, 53 (2003)

Approaching the limit for focusing x-rays?

Kang et al., Phys. Rev. Lett. 96, 127401 (2006)

BESSY

Achieving high NA is challenging because x-rays interact weakly

 $n = 1 - \delta - i\beta$ $\delta, \beta \sim 10^{-3}$ to 10^{-6} \Rightarrow |n| ≈ 1

Differential-aperture x-ray microscopy

3D depth-resolved, white-beam Laue diffraction technique

B. Larson, W. Yang, G. Ice, *Nature* 415, 887 (2002)

Studying 3D AI structure by DAXM

Almost-Impossible Materials Science

- Resolution of real-space methods is fundamentally limited by optics technology. Because n ~ 1 for x-rays, NA << 1 and DOF << R (like electrons).
- Reciprocal-space methods can benefit from high resolution detectors and optics ...
 - ⇒ But the resolution ultimately depends on neither. R and DOF are limited only by λ and usable signal.

- X-ray coherent diffraction is a *lensless* method suited for 3D imaging of non-crystalline structures
- Resolution limited only by measurable momentum transfer (NA)
- But: have phase problem full recovery is required, must assume some *a priori* information, e.g. object extent

Record coherent diffraction pattern

- Phase information is obtained by measuring diffraction pattern at sufficiently fine intervals
- Reconstruct object amplitude by guessing at phase, then iteratively improving guess to get self-consistent solution
- Resolution: transverse R ~ 0.61 λ/NA
 longitudinal DOF ~ 1.22 λ/(NA)²
 - Contrast: $\propto |f_1^2 + f_2^2|$

R. Gerchberg and W. Saxton, *Optik* 35, 237 (1972) J. R. Fienup, *Appl. Opt.* 21, 2758 (1982)

Biological objects

Reconstructed coherent diffraction images of a freeze-dried yeast cell viewed at (A) normal, (C) 3°, and (D) 4° off-normal incidence. Labels identify the nucleus (N), a storage vacuole (V), and cell membrane (M). Image brightness represents magnitude, hue represents phase.

(B) STXM image taken of the same cell using 540-eV x-rays at ~42 nm resolution.

D. Shapiro et al., PNAS 102, 15343 (2005)

- Optimizing contrast for biological specimens such as cytoskeletal actin filaments and mineralized fish bone
- Exploring resonant enhancement at absorption edges

Coherent diffraction pattern (2.2 keV) from a fish bone at a low mineralization state

Image of fish bone reconstructed solely from diffraction data

J. Miao, C. Song (UCLA)

Record hologram	$I = a+b ^{2} = a ^{2} + b ^{2} + a^{*}b + ab^{*}$
Reconstruct	$bI = b a ^{2} + b b ^{2} + a^{*}bb + abb^{*}$
	$= aI_b + b(I_a + I_b) + background$

- Reference wave encodes magnitude and phase of wave scattered by object in hologram
- Contrast and resolution: same as for coherent diffraction
- Reconstruct sample amplitude by "re-illuminating" hologram with reference wave (or its C.C.)

Holography

D. Gabor, Nature 161, 777 (1948)

G. Stroke, *Appl. Phys. Lett.* 6, 201 (1965) Winthrop, Worthington, *Phys. Lett.* 15, 124 (1965)

FT hologram formation

object wave

reference wave

$$I = |a+b|^2 = |a|^2 + |b|^2 + a^*b + ab^*$$

hologram intensity

- Numerically take FT of hologram intensity to reconstruct
- Spatially separated primary, conjugate object waves result
- Weak curvature f(x,y) on object wave can be ignored

mage terms:
$$a^*b+ab^* = \varphi(s\xi)F(\xi,\eta)+\varphi(s\xi)^*F(\xi,\eta)^*$$

where:
$$F(\xi,\eta) = \frac{e^{ikz}}{i\lambda z} f(\xi,\eta) \iint a(x,y) f(x,y) e^{-\frac{ik}{z}(x\xi+y\eta)} dxdy$$
,

$$\varphi(s,\xi) = e^{-\frac{ik}{z}s\xi} \text{ and } f(\xi,\eta) = e^{\frac{ik}{2z}(\xi^2 + \eta^2)}$$
$$FT^{-1}\{a^*b + ab^*\} = f(x-s,y)a(x-s,y) + f(-(x-s),-y)^*a(-(x-s),-y)^*$$

Hard disks: storage density

Almost-Impossible Materials Science

CoPt magnetic labyrinth nanostructures

side view

Sample: O. Hellwig (Hitachi)

MFM, top view

 $5 \ \mu m \ x \ 5 \ \mu m$

continuous object

SiN_x / Pt (24 nm) / [Co (1.2 nm) / Pt (0.7 nm)]₅₀ / Pt (1.5 nm)

perpendicular anisotropy

→ magnetic storage media

Pinhole mask method

McNulty

Amost-Impossible Materials Science

STXM

FTH

Switching in patterned magnetic media

LETTERS

Ø 110 nm

Amost-Impossible Materials Science

McNulty

Almost-Impossible Materials Science

16 June 2006

Z. Xiao et al., J. Am. Chem. Soc. 126, 2316 (2004)

Nanostructure of multi-twinned crystals

- Multi-twinned Pb crystals >5 µm in size are readily grown by electrodeposition. Morphology is strongly dependent on the electrochemical potential
- Calculations indicate they should not grow larger than ~200 nm due to strain near grain boundaries
- Even highly regular "crystals" show little or no Bragg diffraction
- If crystals, what is their structure, orientation, and nature of defects?
- Are they amorphous? If so, how do they grow?

- Beam passing through zone plate (0th-order) illuminates sample.
- Beam focused by zone plate (3rd-order) serves as reference. Reference wave interferes with object wave to form hologram.
- NA of reference wave determines hologram resolution. Detector resolution determines object field of view.

Sample

Y. Xiao (APS), Z. Xiao (ANL/MSD)

Almost-Impossible Materials Science

Holograms

Only part of hologram recorded

- limit direct-beam blooming
- increase angular resolution
- collect un-phased diffraction

... but pay penalty:

 much sample information not recorded, especially at lowest spatial resolution

3 µm

Closeup SEM of Pb crystal. Crystal is ~4.5 µm in extent; dendrites are 100-300 nm wide. Reconstructed FT hologram. Field of view is limited to \sim 5 µm by detector resolution. X-ray energy was 1050 eV.

Magnitude

Phase

phase =
$$\tan^{-1} \left\{ \frac{\operatorname{Im}(\psi)}{\operatorname{Re}(\psi)} \right\}$$

Coherent diffraction is aided by Fresnel

G. Williams, K. Nugent (U. Melbourne)

Fresnel diffraction imaging

Phase

Magnitude with color-encoded phase

3D coherent diffraction microscopy

(a) SEM of pyramidal indentation in a 100-nm Si_3N_4 membrane lined with 50-nm Au spheres. (b) 3D image reconstructed from 123 diffraction projections spanning -57° to +66°, using reality and positivity constraints. (c) Large DOF projection. (d) Enlarged region of (c).

H. Chapman et al., J. Opt. Soc. Am. A23, 1179 (2006)

3D coherent diffraction microscopy

(a) SEM of pyramidal indentation in a 100-nm Si_3N_4 membrane lined with 50-nm Au spheres. (b) 3D image reconstructed from 123 diffraction projections spanning -57° to +66°, using reality and positivity constraints. (c) Large DOF projection. (d) Enlarged region of (c).

H. Chapman et al., J. Opt. Soc. Am. A23, 1179 (2006)

Technically challenging

- Precision sample rotation and targeting in x,y,z
- Short working distance at high NA (using optics)
- Radiation dose to sample (but Dose fractionation helps)

Physical limitations restrict

- Accessible angular range
- Number of views obtainable
- Sample field-of-view

... time consuming!

⇒ Parallelize projection acquisition

Multi-view holography with beamsplitter

Possible method for one-shot tomography. Six holograms are shown but they are part of a 2D array of 7x7-1 = 48

Multiple illumination directions

Micromachined Si mirror nanoactuators for x-ray astronomy

M. Schattenberg, MIT

Parallel tomographic coherent diffraction. N beams are directed through sample onto N detectors

- Coherent diffraction microscopy is getting easier, but phase retrieval is slow and uniqueness problem not solved.
- Holograms are quickly and reliably reconstructed in seconds on a small computer. Pinholes give cleanest results, but ZPs are best for sample and scalable to hard x-rays. Holographic data aids diffraction phase recovery.
- Currently takes ~10¹⁰ photons for ~50 nm resolution (2D). ERL should provide enough coherent flux for 3D data set at same resolution and in same time.

Snapshots: smaller & faster

Stanford 1878

One day ... ps magnetic imaging?

J. Stohr (Stanford U.)

- X-ray microscopy is now being used to image nanoscale 3D structures at 3rd-generation sources, but acquisition takes days.
- Coherent diffraction avoids optics limitations and can be combined with tomography for 3D imaging. Parallel data collection will enable time-resolved studies.
- Materials science at the nanometer scale, especially time-resolved problems, will benefit from the 1000x higher brilliance of the ERL.

Stefan Eisebitt, Chris Günther, Andreas Menzel, Florin Radu

Lixin Fan, Yanan Xiao

David Paterson

Jianwei Miao, Changyong Song

Keith Nugent, Andrew Peele

Bill Schlotter

Olaf Hellwig

BESSY

Advanced Photon Source

Australian Synchrotron

U. California at Las Angeles

University of Melbourne

Stanford University

Hitachi Almaden Res. Center

BESSY, EU Marie Curie Foundation, U.S. Dept. of Energy OS-BES