Quantitative 3D Imaging of Nanomaterials by Using Coherent X-rays

Jianwei (John) Miao

Dept. of Physics & Astronomy and California NanoSystems Institute University of California, Los Angeles

> Workshop on Almost Impossible Materials Science: Pushing the Frontier with ERL X-ray Beams, June 16 & 17, 2006

The First Compound Light Microscope Based on a Three Lenses Conformation

Hooke's compound light microscope and a drawing of cork made by Hooke.

- 1611 **Kepler** suggested that a compound light microscope could be constructed based on a three lenses conformation.
- 1665 **Hooke** built the 1st compound light microscope and imaged small pores in sections of cork he called "cells"

Solving the phase problem

The Shannon Sampling Theorem

The Shannon Sampling Theorem

The Oversampling Method

The Oversampling Method

Experimental Implementation of the Oversampling Method

The Physical Explanation to the Oversampling Method

Better coherence \Rightarrow More correlated intensity points \Rightarrow Phase information

Miao, Sayre & Chapman, J. Opt. Soc. Am. A 15, 1662 (1998).

- (i) Started with 16 independent reconstructions.
- (ii) For each reconstruciton:

(iii) Select a seed out of 16 images, ρ_{seed} , corresponding to the smallest *R*-value.

$$R = \sum \left| F_{\text{exp}} - \alpha F_{cal} \right| / \sum F_{\text{exp}}(k_x, k_y)$$

(iv)
$$\rho_{new}^{i} = \sqrt{\rho_{seed}} \times \rho_{old}^{i}$$

 $i = 1, 2, \dots, 16$

Coherent X-ray Diffraction Pattern from a Single GaN Quantum Dot Nanoparticle

An AFM Image of GaN quantum dots, showing the platelet structures.

An oversampled diffraction pattern from a single GaN quantum dot at 0°

Image Reconstruction Using the gHIO Algorithm

The 0th generation

Image Reconstruction Using the gHIO Algorithm

The 8th generation

A New Strategy for 3D Lensless Imaging

3D Surface Morphology of the GaN Quantum Dot Nanoparticle

Quantitative 3D Internal View of the GaN Quantum Dot Nanoparticle

Imaging Nanostructures at 7 nm Resolution

Hierarchic Structure of Bone and the Hodge Model (1963)

Hierarchic Structure of Bone and the Hodge Model (1963)

Imaging of a Herring Fish Bone Particle with a High Content of Mineral Crystals

Artifacts in 3D Image Reconstruction with Conventional Tomography

by using conventional tomography (27 projections ranging from -69 ° to +69 °) "Despite advanced image-acquisition procedures and the application of denoising techniques, cryoelectron tomograms still suffer from substantial residual noise and distortions because of missing data."

Medalia et al., Science 298, 1209 (2002).

Pseudo-Polar Fast Fourier Transform (PPFFT)

PPFFT: Equal $\Delta(\tan\theta)$ instead of equal $\Delta\theta$

Equally Sloped Tomography: A Combination of PPFFT with the Oversampling Method

(a) An original 3D object

(b) Reconstruction using equally sloped tomography

Miao, F. Förster & O. Levi, Phys. Rev. B. 72, 052103 (2005).

- Oversampling the diffraction intensities \Rightarrow the phase information.
- Coherent (*i.e.* lensless) imaging ⇒ structure determination of nanomaterials and biological samples in two- and three-dimensions.
- Application of coherent imaging: materials science, nanoscience and biology.
- Equally sloped tomography \Rightarrow 3D image reconstruction at higher quality
- A bright future with the emerging of more coherent and brilliant X-ray sources such as ERLs and X-FELs.

- T. Ishikawa, Y. Nishino, Y. Kohmura, RIKEN/SPring-8
- M. de Jonge I. NcNulty, APS, ANL
- D. Paterson, Australia Synchrotron Facility
- C. Larabell, UC San Francisco and LBNL
- M. J. Glimcher, L. Graham, Harvard Medical School
- F. Tamanoi, UCLA
- G. Jensen, Caltech
- S. Risbud, UC, David
- M. LeGros, T. Earnest, LBNL
- C.C. Chen, T.K. Lee, Taiwan

Supported by DOE, NSF, RIKEN, Sloan Foundation

Coherent Imaging Group at UCLA