A new era in surface diffraction – pulsed laser deposition of complex metal oxide thin films

Phil Willmott, Christian Schlepütz, Roger Herger, Oliver Bunk, and Bruce Patterson

Beamline X04SA Materials Science, Swiss Light Source

ERL Workshop 3: “Almost Impossible Materials Science”
June 16 - 17th, 2006

Almost impossible materials science
Cornell, June 2006
Motivation

- Strongly correlated electron systems
 - Perovskites ABO$_3$
- Size effects (cation/anion ratio)
 - Rotation of O-octahedra
 - Mott-Hubbard model [U (Coulomb) v W (bandwidth)]
- Choice of cation (valence), oxygen vacancies
 - Vary dimensionality and doping
- Jahn-Teller distortions
- Heteroepitaxial strain (films)

Subtle structural differences at the surface and/or film-substrate interface, due to relaxations/reconstructions, can lead to fundamental changes in the physical properties!!
Motivation

- Downsizeing

- Surface/interface effects
 - e.g., FE-STO surface
 - e.g., 2-D e⁻ gas, interface
 STO/LAO

- Bandstructure determination
 photoelectron spectroscopy
 - universal curve (e⁻ escape depth) ~ 5 ML
 - Depth of surface ~ 5 ML
 - Measuring bulk properties?
Surface X-Ray Diffraction

- SXRD requires:
 - Atomically flat surfaces
 - High photon flux (SR)
 - Minimization of background signal
 - A very good x-ray detector (weakest part of signal generally the most important!!)
Recording CTRS and FORs

© 2005, C.M. Schleputz, Swiss Light Source

Almost impossible materials science

Cornell, June 2006
The PILATUS II pixel detector

- 20 bit counter/pixel → accumulates > 10^6 cts before saturation
- Linear counting rates up to 10^6 cts/s
- 487×195 pixels, 172×172 μm² each
- Single-photon counting technology, no dark-noise, < 0.1% dead pixels
- Up to 100 frames/second
Results using P-II

- Raw data: Dawber, Lichtensteiger, et al. (Uni Geneva)

24 x
(5 ML SrTiO$_3$
+ 2 ML PbTiO$_3$)

SrTiO$_3$
substrate
And how it looks
GaAs nanorods

- R. Feidenhans’l and S.O. Mariager (Uni Copenhagen)
 - Au/GaAs rods have hexagonal cross-section on Si(111)
 - 6 CTRs
 - 15 mins, PII
 - c.f. 4 hours, pt. det.

Contourplot of the (111) plane, through [-4/3 2/3 2/3]
Log(Intensity)
Strontium titanate

- 1800 independent structure factors: 9 CTRs, 17 FORs
- (2x2), (2x1), (1x1) domains

\[\chi^2_{\text{red}} = 0.99 \]
Strontium titanate

• Models

(2x1)

• Hard work modelling – see later! (2x2)
Preparing surfaces

• Single crystal available as bulk?
 • High quality?
 • Atomically flat?
• Cleaving plane?
 • (quasi-)cubic – NO!
 • Interest in other plane?
• Problems with the above?
• Thin films!
• Pulsed laser deposition (PLD)

PLD at the Swiss Light Source

P.R. Willmott and J.R. Huber, Rev. Mod. Phys. 72 315 (2000)
SXRD and in-situ PLD – the perfect marriage?
La$_{1-x}$Sr$_x$MnO$_3$ thin films

- Ablate LaMnO$_3$/SrMnO$_3$ rod
 - Any choice of x!
- > 100 nm growth
 - Still 2-D (RHEED)
 - High crystalline quality (channeling-RBS)
- ML-for-ML studies
 - Grow 1 ML
 - Full SXRD data set
 - Repeat...
La$_{1-x}$Sr$_x$MnO$_3$ thin films

- Ablate LaMnO$_3$/SrMnO$_3$ rod
 - Any choice of x!
- > 100 nm growth
 - Still 2-D (RHEED)
 - High crystalline quality (channeling-RBS)
- ML-for-ML studies
 - Grow 1 ML
 - Full SXRD data set
 - Repeat...
La$_{1-x}$Sr$_x$MnO$_3$ thin films

- Ablate LaMnO$_3$/SrMnO$_3$ rod
 - Any choice of x!
- > 100 nm growth
 - Still 2-D (RHEED)
 - High crystalline quality (channeling-RBS)
- ML-for-ML studies
 - Grow 1 ML
 - Full SXRD data set
 - Repeat...
La$_{1-x}$Sr$_x$MnO$_3$ thin films

(11l) CTRs

Log(Int)

$L (r/lu)$

Almost impossible materials science

Cornell, June 2006
Kinetic studies of LSMO
Kinetic studies – island breakup

PLD:
High supersaturation
High density of small 2-D islands
Broken up by impinging flux up to $\theta \approx 0.5$

Above $\theta \approx 0.5$, island coalescence
Island breakup suppressed

The future of surface diffraction

- Complex systems (e.g., perovskites), thin films (PLD)
 - Unit cell ~ 20 atoms
 - “surface” up to 5 ML depth
- Structural evolution
- Massive data sets! Limited beamtime!
- PILATUS to the rescue
- Modelling – many possibilities, local minima
- Direct methods (c.f. STO!)
 - Phase retrieval
 - Genetic algorithms
 - Light elements (e.g., H); extracting the valence bonds???

ERL and surface diffraction

- 1000 x flux/brilliance
 - Full data sets (inc. massive oversampling)
 - Follow structure as fn. of
 - Temp; film thickness; strain; external field; ...

- ~1 ps bunches
 - Directly probe PLD/nonthermal processes...

- High energies + large 6M pixel detector ⇒ RHEED-like mapping of large chunks of k-space – “parallel processing”

- nm-focussing ⇒ “Surface-reconstruction microscopy” (?!?) ...

- ... becomes feasible with ERL!
Thanks to...

- Pilatus detector: Christian Brönnimann and Detector Group, SLS
- Surface diffractometer: Michael Lange, Dominik Meister
- Software: Christian Schlepütz, David Maden
- External users:
 - Robert Feidenhans’l et al. (Copenhagen)
 - Matt Dawber et al. (Geneva)