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Motivation

Strongly correlated electron systems
e Perovskites ABO,

Size effects (cation/anion ratio)
e Rotation of O-octahedra
e Mott-Hubbard model [U (Coulomb) v W (bandwidth)]

Choice of cation (valence), oxygen vacancies
e Vary dimensionality and doping

Jahn-Teller distortions

Heteroepitaxial strain (films)

Subtle structural differences at the surface and/Zor film-
substrate interface, due to relaxations/reconstructions, can
lead to fundamental changes in the physical properties!!
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Motivation

Downsizing

Surface/interface effects
e e.g., FE-STO surface

D.D. Fong et al., Science 304 1650
(2004)

bulk film

intoarfacao

e e.g., 2-D e gas, interface
STO/LAO

A. Ohtomo and H.Y. Hwang, Nature 427
423 (2004)

Bandstructure determination
photoelectron spectroscopy

e universal curve (e escape
depth) ~ 5 ML
e Depth of surface ~ 5 ML

e Measuring bulk properties?
H.Dulli et al., Appl. Phys. Lett. 77 570 (2000)
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Surface X-Ray Diffraction
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Recording CTRS and FORs
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The PILATUS II pixel detector

e 20 bit counter/pixel > a;cumulates 14'000 counts 0 counts
> 106 cts before saturation f

e Linear counting rates up to 106 cts/s
o 487x195 pixels, 172x172 pm2 each

e Single-photon counting technology,
no dark-noise, < 0.1% dead pixels

e Up to 100 frames/second Flatfield, GaAs @ 12.398 keV, 1s

—— ffdata
—— Poisson, var = sqrt(N)
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Results using P-II

e Raw data: Dawber, Lichtensteiger, et al. (Uni Geneva)
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GaAs nanorods

e R. Feidenhans’l and S.0O. Mariager (Uni Copenhagen)
Au/GaAs rods have hexagonal cross-section on Si(111)

6 CTRs Contourplot of the (111) plane, through [-4/3 2/3 2/3]
15 mins, PII Log(Intensity)

c.f. 4 hours, pt. det. .
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Strontium titanate

1800 independent structure factors: 9 CTRs, 17 FORs
(2x2), (2x1), (1x1) domains
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Strontium titanate

e Models

(2x1)

e Hard work modelling — see later! (2x2)
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Preparing surfaces

Single crystal available as bulk?
e High quality?

o Atomically flat?

Cleaving plane?

e (quasi-)cubic — NO!

e Interest in other plane?
Problems with the above?

Thin films!

Pulsed laser deposition (PLD)

e P.R. Willmott, Prog. Surf. Sci. 76 163 (2004)
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PLD at the Swiss Light Source

pulsed
deposition
b 04 ML/s

film on

vacuum substrate

ns laser
pulse

P = 1
(~0.1 3, 10 Hz, UV)

P.R. Willmott and J.R. Huber, Rev. Mod. Phys. 72 315 (2000)
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SXRD and in-situ PLD - the perfect marriage?
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La,_ , Sr,MnO; thin films

e Ablate LaMnO5;/SrMnO; rod

e Any choice of x!
e > 100 nm growth
o Still 2-D (RHEED)

e High crystalline quality
(channeling-RBS)

e ML-for-ML studies
e Grow 1 ML

e Full SXRD data set

e Repeat...
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La,_  Sr,MnO; thin films

e Ablate LaMnO5;/SrMnO; rod

e Any choice of x!

e > 100 nm growth

random

e Still 2-D (RHEED)

e High crystalline quality
(channeling-RBS)
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e ML-for-ML studies

e Grow 1 ML Gharnrel

e Full SXRD data set

e Repeat...
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La,.,Sr,MnO; thin films
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Kinetic studies of LSMO

laser off

laser on
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Kinetic studies — island breakup

High supersaturation
High density of small 2-D islands
Broken up by impinging flux up

Above 6 = 0.5, island coalescence
Island breakup suppressed

J.M. Pomeroy et al., Phys. Rev. B 66 235412 (2002)

Willmott et al., Phys. Rev. Lett. 96 176102 (2006)
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The future of surface diffraction

Complex systems (e.g., perovskites), thin films (PLD)
e Unit cell ~ 20 atoms
e “surface” up to 5 ML depth

Structural evolution

Massive data sets! Limited beamtime!
PILATUS to the rescue

Modelling — many possibilities, local minima
Direct methods (c.f. STO!)

e Phase retrieval

e Genetic algorithms

e Light elements (e.g., H); extracting the valence bonds???
J. Ciston et al., submitted; L.D. Marks et al., Acta Cryst. A62 (2006)
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ERL and surface diffraction

1000 x flux/brilliance
e Full data sets (inc. massive oversampling)
e Follow structure as fn. of
e Temp; film thickness; strain; external field; ...

~1 ps bunches
e Directly probe PLD/nonthermal processes...

High energies + large 6M pixel detector = RHEED-like
mapping of large chunks of k-space - “parallel processing”

nm-focussing = “Surface-reconstruction microscopy” (?!) ...

... becomes feasible with ERL!
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Thanks to...

Pilatus detector: Christian Bronnimann
and Detector Group, SLS

Surface diffractometer: Michael Lange,
Dominik Meister

Software: Christian Schleputz, David
Maden

External users:
e Robert Feidenhans’| et al. (Copenhagen)
o Matt Dawber et al. (Geneva)
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