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Topics

« Synchrotron studies of flow & processing

— Experimental infrastructure & examples
e Shear flow
* Processing

e ERL: microfocus + coherence
— Microfocus... 2 ideas

— Coherence...
 Homodyne scattering to measure velocity gradients?



How do we (currently) use

synchrotron?

e High flux

— Time-resolved studies of structural dynamics In
‘real time’

— Closely coupled to detector issues

— Potential of 3rd generation sources probably
not yet maxed out

e ‘High’ energy (18 - 25 keV)

— Expedient way to reduce absorption, enable
novel instrumentation



In situ scattering: Shear flow
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Rotating-disk shear cell:
1-3 plane
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Ugaz & Burghardt, Macromolecules, 32, 5581 (1998)



Annular cone & plate shear cell:
1_2 plane "2" or "Gradient” direction
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Shear cell: Representative setup:

Caputo & Burghardt,
Macromolecules, 34,
6684 (2001).




LCP Structure

(a) Microscopic (b) Mesoscopic
u = test molecule orientation n = director orientation

Hu) Orientation Distribution HAn)
Function
S, =<uu>- 73 Order Parameter Tensor S=<nn>-13

S, Scalar Order Parameter S



Lyotropic nematic PBG:
1-2 plane scattering patterns
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Anisotropy Factor
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Anisotropy in 1-2 plane
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Orientation ‘Trajectories’

Model Experiment
0.9 0.6
2 S
o (&)
[
= >
- ) Sos
= =
So7 %
= c
<
: Reversal
0.6 ————4——————j— 04 Lol b b b b ben s e
4 2 0 2 4 6 8 -1 05 0 05 1 15 2 25 3
Orientation Angle (deg) Orientation Angle (deg)

Caputo & Burghardt, Macromolecules, 34, 6684 (2001).



ERL ldea #1

e Polydomain materials
— LCPs

_'Bloc Copolymers

Large beams currently average
over distribution of
domain/grain orientations

Microfocus to enable ‘single
domain’measurements?
During shear?



ERL Idea #1... Issues

e \What about third dimension?

~ microns

- Good opportunities for detailed mapping of domain/grain
structure in thin samples (e.g. evolution during annealing)
- Possible in situ studies on thin solids during deformation?
- But, how to realize controlled flows on liquid samples?



Beyond shear:
Complex channel flows

» Materials processing often
involves mixtures of shear &
extension

» Extension can be much more
effective than shear at aligning
fluid microstructure

» ‘Slit-contraction’ and “slit-
expansion’ flows: superposition
of stretching on otherwise
inhomogeneous shear flow




X-ray capable channel flow die
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1-4 Sharp Expansion .
(19 mm shoulder to aperture) 4-1 Sharp Contraction

Cinader & Burghardt, Macromolecules 31, 9099 (1998)




Typical experiment:
Commercial LCP in channel flow

o Xydar commercial

LCP

\[o-] [0t [-00-],
e Melt experiments at
350 C

Cinader & Burghardt, Macromolecules 31, 9099 (1998)



1:4 slit-expansion flow:
Bimodal orientation state
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ERL ldea #2

Complex fluids + microfluidics + microfocus x-
ray scattering

Combined effects of flow + confinement on
complex fluids

Liquid crystals, lyotropic surfactants, etc.

Platform for extremely precious (e.g. small
guantity) samples?

Typical microfluidics... 10s of microns
ERL microfocus... more than adequate (overkill?)

Question: necessary to move towards
‘nanofluidics’ for interesting confinement effects?



Polymer Bicontinuous Microemulsions

(3 * Bates & Lodge, U. Minnesota
(3 e Symmetric blends of immiscible linear
(3 homopolymers with corresponding diblock
* M, adjusted so Tt of pure diblock ~ T,

(5 of pure binary blend
(5 « Typical isopleth phase diagram:
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Quiescent neutron scattering

PEE-PDMS:
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Steady shear: PEE-PDMS
Collaboration with T. P. Lodge & F. S. Bates, U. Minnesota

Caputo et al., Phys Rev. E, 66, 041401 (2002)

Model: Patzold & Dawson, Phys. Rev. E 54, 1669 (1996)



PS-PI Microemulsion:
X-ray Photon Correlation Spectroscopy

e Beamline 8-1D
* Simon Mochrie, Yale

Speckle pattern

125°C
17 ms exposure
850 images/series
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PS-Pl Microemulsion:

X-ray Photon Correlation Spectroscopy
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PS-PI Microemulsion:
X-ray Photon Correlation Spectroscopy

Dependence of Decay Time (7) on q

125°C
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Coherent Scattering & Flow

Consider dilute spherical particles... (Berne & Pecora, Ch. 5)
Heterodyne correlation function (independent scattering):

Rt =21, {exefa- [r,0-r,@])= 21, @0

I Fourier transform pair

G,(R,1) = <5(R —[r;®-r, (0)]> (Probability of particle
displacement R in time t)

With no flow, G,(R,t) satisfies diffusion equation...

£6,RY=-DVG,RY; GRO)=AR)

Fourier transformation & solution gives:

F(q,t) ~ exp(—q2 Dt) (Heterodyne)

F,; (0,t) =exp(—q°Dt) Thus...
J(q ) P(=4"DY) Thu Fz(q,t):\Fl(q,t)\z~exp(—2q2Dt) (Homodyne)



Added Flow...

G, (R,t) now satisfies convection-diffusion equation...

gGs + V : (VGS) — DVZGS’ GS(R’O) = 5(R)

For small scattering volume, linearize velocity field:

V=V+TI- R
\

With only uniform velocity (I' = 0), solution becomes...
F, (a.t) =exp(iq- Vt—q°Dt)

Mean velocity Velocity gradient tensor

Heterodyne spectrum shows Doppler shift: ~ F:(a,t) ~€os(q- Vt)exp(-q°Dt)

(Recent work from

) Mark Sutton at APS
(Uniform flow has no effect on homodyne spectrum...) Sector 8 demonstrates

this in XPCS)



With velocity gradients...

Homodyne spectrum now Is affected at leading order; under many
conditions, this can dominate the measured correlation function.

Fuller & Leal, JFM 100, 555-575 (1980):
) 2
F(at) = ‘ J drRI(R)exp{-ig- F‘{Rt}‘

Beam intensity profile Select various ‘projections’ of I
depending on scattering geometry.

Correlation function shows Gaussian decay:

_ 2,21 242 /= characteristic deformation rate
Fz(q’t) exp( 4 Lt ) L = length scale of scattering volume

Allows measurement of velocity gradients provided...

1 1 (Note, as  — 0, convection always
T, =——<<7Tp = — dominates over diffusion, and will set
’ C]]/L g D time scale for decay of correlation

function.)



Would this ever be interesting?

One possible application: ‘Shear-banding’ in complex fluids

Uniform shear:

* Localized band
of high velocity
gradient
 Constitutive
instability and/or
phase separation

Frequently found in solutions of wormlike micelles...

Concept: spatially-resolved, simultaneous measurements of
structure via conventional SAXS and local velocity gradient via
homodyne correlation function.

Can 1t work??



Reality check...
1

Correlationtime: ¢

Tk
Suppose g = 0.1 nm (typical SAXS)...
L=100u L=10u L=1p
y=1s"17,=10"s y=1s"7,=10"s y=1s"7,=10"s
y=100s", T, =10"°s y=100s", T, =10"s y=100s", T, =10"s

Competing objectives...

- want faster than intrinsic sample dynamics
- want high spatial resolution

- require coherence

Unknowns...
Maximum time resolution for XPCS? (detectors?) Effect of elongated
scattering volume? If coherence imperfect, does coherence length replace L?




Summary

 In situ synchrotron scattering during flow yields detailed
Insights into microscopic origins of rheological properties

of complex fluids

e |deas...
— Microfocus... single ‘domain’ dynamics?

« Hard for flow...
— Microfocus + microfluidics + complex fluids?

» Should work; already possible?

— Coherent scattering during flow?
» Access to local velocity gradients from homodyne spectrum...

* Many questions...



Real processing:
In situ Injection molding

WAXS Mold + Detector
(Close up)

Undulator Beamline 5ID-D of DND-CAT

Iy itl“-"? IMorgan-Press /. Vies |

> 16° trenches (on both the
mold and wedge block)
allow for scattered X-rays
to readily exit the mold

=

Remote Acutation

System _ _
. Rendon & Burghardt, in preparation (2006)



Injection mold detalls

Built-in Trenches

N (for X-ray Access) Assembled X-ray Mold

& Wedge Block
(side view)

Mold Cavity
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Representative experiment:
Injection molding of Vectra A®

‘

Location along mold:
23 mm away from die entrance

o Filling
O eomereseor & Direction

are needed to see this picture.

Molding Parameters:

Fill time = 4 sec

Teir = 285 0(? Data acquisition rate: 12 frames/sec
Thozzie =300 C Video clip slowed down by factor of 2.4
Toog =90 °C

Rendon & Burghardt, in preparation (2006)



PS-PI Microemulsion:
Structure during oscillatory shear

QuickTime™ and a
decompressor
are needed to see this picture.




PS-Pl Microemulsion

Ing oscillatory shear

Structure dur
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