# Dynamics of Complex Polymer Fluids During Flow \& Processing 

## Wesley Burghardt

Department of Chemical \& Biological Engineering and
Department of Materials Science and Engineering
Northwestern University
Evanston, IL


Advanced Photon Source

## Topics

- Synchrotron studies of flow \& processing
- Experimental infrastructure \& examples
- Shear flow
- Processing
- ERL: microfocus + coherence
- Microfocus... 2 ideas
- Coherence...
- Homodyne scattering to measure velocity gradients?


## How do we (currently) use synchrotron?

- High flux
- Time-resolved studies of structural dynamics in 'real time'
- Closely coupled to detector issues
- Potential of 3rd generation sources probably not yet maxed out
- 'High’ energy (18-25 keV)
- Expedient way to reduce absorption, enable novel instrumentation


## In situ scattering: Shear flow



## Rotating-disk shear cell: 1-3 plane



Linkam CSS-450 Shear Stage:



Ugaz \& Burghardt, Macromolecules, 32, 5581 (1998)

## Annular cone \& plate shear cell:

 1-2 plane

Shear cell:


Representative setup:


Caputo \& Burghardt, Macromolecules, 34, 6684 (2001).

## LCP Structure

(a) Microscopic
$\boldsymbol{u}=$ test molecule orientation
(b) Mesoscopic
$\boldsymbol{n}=$ director orientation


| $\Psi(\boldsymbol{u})$ | Orientation Distribution <br> Function | $\bar{\Psi}(\boldsymbol{n})$ |
| :---: | :---: | :---: |
| $\boldsymbol{S}_{m}=<\boldsymbol{u} \boldsymbol{u}>-I 3$ | Order Parameter Tensor | $\overline{\boldsymbol{S}}=<\boldsymbol{n} \boldsymbol{n}>-I I 3$ |
| $S_{m}$ | Scalar Order Parameter | $\bar{S}$ |

## Lyotropic nematic PBG: 1-2 plane scattering patterns



$$
\text { Shear } \text { Rate }=1 \mathrm{~s}^{-1}
$$





Caputo \& Burghardt, Macromolecules, 34, 6684 (2001).

## PBG: Reversal in 1-2 Plane



Caputo \& Burghardt, Macromolecules, 34, 6684 (2001).

(Larson-Doi 'tumbling polydomain' model)

## Orientation ‘Trajectories’



Experiment


Caputo \& Burghardt, Macromolecules, 34, 6684 (2001).

## ERL Idea \#1

- Polydomain materials
- LCPs
$5 \mu \mathrm{~m}$
- Block Copolymers


Large beams currently average over distribution of domain/grain orientations

Microfocus to enable 'single domain'measurements?
During shear?

## ERL Idea \#1... Issues

- What about third dimension?

- Good opportunities for detailed mapping of domain/grain structure in thin samples (e.g. evolution during annealing)
- Possible in situ studies on thin solids during deformation?
- But, how to realize controlled flows on liquid samples?


## Beyond shear:

## Complex channel flows

- Materials processing often involves mixtures of shear \& extension
- Extension can be much more effective than shear at aligning
a) b)
 fluid microstructure
- 'Slit-contraction' and 'slitexpansion' flows: superposition of stretching on otherwise inhomogeneous shear flow


## X-ray capable channel flow die



Interchangeable spacers define particular geometry:

1-4 Sharp Expansion


4-1 Sharp Contraction



## Typical experiment: Commercial LCP in channel flow



Cinader \& Burghardt, Macromolecules 31, 9099 (1998)

## 1:4 slit-expansion flow: Bimodal orientation state



## ERL Idea \#2

- Complex fluids + microfluidics + microfocus xray scattering
- Combined effects of flow + confinement on complex fluids
- Liquid crystals, lyotropic surfactants, etc.
- Platform for extremely precious (e.g. small quantity) samples?
- Typical microfluidics... 10s of microns
- ERL microfocus... more than adequate (overkill?)
- Question: necessary to move towards 'nanofluidics’ for interesting confinement effects?


## Polymer Bicontinuous Microemulsions



- Bates \& Lodge, U. Minnesota
- Symmetric blends of immiscible linear homopolymers with corresponding diblock - $\mathrm{M}_{\mathrm{w}}$ adjusted so $\mathrm{T}_{\text {ODT }}$ of pure diblock $\sim \mathrm{T}_{\mathrm{c}}$ of pure binary blend
- Typical isopleth phase diagram:

High BCP:


## Quiescent neutron scattering

- PEE-PDMS:


Morkved et al., Faraday Disc. 112, 335 (1999)

- Teubner-Strey model:
$S(q) \sim \frac{1}{a_{2}+c_{1} q^{2}+c_{2} q^{4}}$





## Steady shear: PEE-PDMS

Collaboration with T. P. Lodge \& F. S. Bates, U. Minnesota

Caputo et al., Phys Rev. E, 66, 041401 (2002)

Experiment:

Model:


Model: Pätzold \& Dawson, Phys. Rev. E 54, 1669 (1996)

## PS-PI Microemulsion: X-ray Photon Correlation Spectroscopy



- Beamline 8-ID
- Simon Mochrie, Yale

Speckle pattern
$125^{\circ} \mathrm{C}$
17 ms exposure 850 images/series

$$
g_{2}(\Delta t)=\frac{\langle I(t) I(t+\Delta t)\rangle}{\left\langle I(t)^{2}\right\rangle}
$$

## PS-PI Microemulsion: X-ray Photon Correlation Spectroscopy

$125^{\circ} \mathrm{C}$
Increasing q...


## PS-PI Microemulsion: X-ray Photon Correlation Spectroscopy

## Dependence of Decay Time ( $\tau$ ) on $q$ $125^{\circ} \mathrm{C}$



Direct probe of equilibrium dynamics at length scales of interest.

## Coherent Scattering \& Flow

Consider dilute spherical particles... (Berne \& Pecora, Ch. 5)
Heterodyne correlation function (independent scattering):

$$
\begin{aligned}
& F_{1}(\mathbf{q}, t)=\sum_{j=1}^{N} I_{j}\left\langle\exp \left\{i \mathbf{q} \cdot\left[\mathbf{r}_{j}(t)-\mathbf{r}_{j}(0)\right]\right\}\right\rangle=\sum_{j=1}^{N} I_{j} F_{s j}(\mathbf{q}, t) \\
& \downarrow \quad \text { Fourier transform pair } \\
& G_{s}(\mathbf{R}, t)=\left\langle\delta\left(\mathbf{R}-\left[\mathbf{r}_{j}(t)-\mathbf{r}_{j}(0)\right]\right\rangle \quad \begin{array}{l}
\text { (Probability of particle } \\
\text { displacement } \mathbf{R} \text { in time } t)
\end{array}\right.
\end{aligned}
$$

With no flow, $G_{s}(\mathbf{R}, t)$ satisfies diffusion equation...

$$
\frac{\partial}{\partial} G_{s}(\mathbf{R}, t)=D \nabla^{2} G_{s}(\mathbf{R}, t) ; \quad G_{s}(\mathbf{R}, 0)=\delta(\mathbf{R})
$$

Fourier transformation \& solution gives:
$F_{s j}(\mathbf{q}, t)=\exp \left(-q^{2} D t\right)$ Thus...

$$
F_{1}(\mathbf{q}, t) \sim \exp \left(-q^{2} D t\right)
$$

$$
F_{2}(\mathbf{q}, t)=\left|F_{1}(\mathbf{q}, t)\right|^{2} \sim \exp \left(-2 q^{2} D t\right) \quad \text { (Homodyne) }
$$

## Added Flow...

$G_{s}(\mathbf{R}, t)$ now satisfies convection-diffusion equation...

$$
\frac{\partial}{\partial} G_{s}+\underline{\nabla \cdot\left(\mathbf{V} G_{s}\right)}=D \nabla^{2} G_{s} ; \quad G_{s}(\mathbf{R}, 0)=\delta(\mathbf{R})
$$

For small scattering volume, linearize velocity field:


With only uniform velocity ( $\Gamma=\mathbf{0}$ ), solution becomes...

$$
F_{s j}(\mathbf{q}, t)=\exp \left(i \mathbf{q} \cdot \overline{\mathbf{V}} t-q^{2} D t\right)
$$

Heterodyne spectrum shows Doppler shift: $\quad F_{1}(\mathbf{q}, t) \sim \cos (\mathbf{q} \cdot \overline{\mathbf{V}} t) \exp \left(-q^{2} D t\right)$
(Recent work from
(Uniform flow has no effect on homodyne spectrum...) Mark Sutton at APS Sector 8 demonstrates this in XPCS)

## With velocity gradients...

Homodyne spectrum now is affected at leading order; under many conditions, this can dominate the measured correlation function.

Fuller \& Leal, JFM 100, 555-575 (1980):

$$
F_{2}(\mathbf{q}, t)=\left|\int_{\boldsymbol{z}} d \mathbf{R} I(\mathbf{R}) \exp \{-i \mathbf{q} \cdot \Gamma \cdot \mathbf{R} t\}\right|^{2}
$$

Beam intensity profile Select various 'projections' of $\Gamma$ depending on scattering geometry.

Correlation function shows Gaussian decay:

$$
F_{2}(\mathbf{q}, t) \sim \exp \left(-q^{2} \gamma^{2} L^{2} t^{2}\right)
$$

$\gamma=$ characteristic deformation rate
$\mathrm{L}=$ length scale of scattering volume
Allows measurement of velocity gradients provided...

$$
\tau_{\gamma}=\frac{1}{q \gamma L} \ll \tau_{D}=\frac{1}{q^{2} D}
$$

(Note, as $q \rightarrow 0$, convection always dominates over diffusion, and will set time scale for decay of correlation function.)

## Would this ever be interesting?

One possible application: ‘Shear-banding’ in complex fluids
Uniform shear:


- Localized band of high velocity gradient
- Constitutive instability and/or phase separation

Frequently found in solutions of wormlike micelles...
Concept: spatially-resolved, simultaneous measurements of structure via conventional SAXS and local velocity gradient via homodyne correlation function.

Can it work??

## Reality check...

Correlation time: $\quad \tau_{\gamma}=\frac{1}{q \gamma L}$
Suppose $q=0.1 \mathrm{~nm}^{-1}$ (typical SAXS)...

\[

\]

Competing objectives...

- want faster than intrinsic sample dynamics
- want high spatial resolution
- require coherence

Unknowns...
Maximum time resolution for XPCS? (detectors?) Effect of elongated scattering volume? If coherence imperfect, does coherence length replace $L$ ?

## Summary

- In situ synchrotron scattering during flow yields detailed insights into microscopic origins of rheological properties of complex fluids
- Ideas...
- Microfocus... single ‘domain’ dynamics?
- Hard for flow...
- Microfocus + microfluidics + complex fluids?
- Should work; already possible?
- Coherent scattering during flow?
- Access to local velocity gradients from homodyne spectrum...
- Many questions...


## Real processing:

## In situ injection molding

WAXS Mold + Detector (Close up)

## Undulator Beamline 5ID-D of DND-CAT



Rendon \& Burghardt, in preparation (2006)

## Injection mold details



Assembled X-ray Mold \& Wedge Block (side view)


Tie Bars

## Representative experiment: Injection molding of Vectra $\mathrm{A}^{\circledR}$



QuickTime ${ }^{\text {TM }}$ and a
decompressor
are needed to see this picture.

Filling
Direction

## Molding Parameters:

Fill time $=4 \mathrm{sec}$

$$
\begin{gathered}
\mathrm{T}_{\text {melt }}=285^{\circ} \mathrm{C} \\
\mathrm{~T}_{\text {nozzle }}=300^{\circ} \mathrm{C} \\
\mathrm{~T}_{\text {mold }}=90^{\circ} \mathrm{C}
\end{gathered}
$$

Data acquisition rate: 12 frames/sec Video clip slowed down by factor of 2.4

## PS-PI Microemulsion: Structure during oscillatory shear

QuickTime ${ }^{T M}$ and a
decompressor
are needed to see this picture.

## PS-PI Microemulsion: Structure during oscillatory shear



