Dynamics of Complex Polymer Fluids During Flow & Processing

Wesley Burghardt

Department of Chemical & Biological Engineering and Department of Materials Science and Engineering

Northwestern University

Evanston, IL

Topics

- Synchrotron studies of flow & processing
 - Experimental infrastructure & examples
 - Shear flow
 - Processing
- ERL: microfocus + coherence
 - Microfocus... 2 ideas
 - Coherence...
 - Homodyne scattering to measure velocity gradients?

How do we (currently) use synchrotron?

- High flux
 - Time-resolved studies of structural dynamics in 'real time'
 - Closely coupled to detector issues
 - Potential of 3rd generation sources probably not yet maxed out
- 'High' energy (18 25 keV)
 - Expedient way to reduce absorption, enable novel instrumentation

In situ scattering: Shear flow

Rotating-disk shear cell: 1-3 plane

Linkam CSS-450 Shear Stage:

Ugaz & Burghardt, Macromolecules, 32, 5581 (1998)

Shear cell:

Representative setup:

Caputo & Burghardt, *Macromolecules*, **34**, 6684 (2001).

LCP Structure

- (a) Microscopic
- u =test molecule orientation
- (b) Mesoscopic
- \boldsymbol{n} = director orientation

$\Psi(u)$	Orientation Distribution Function	$\overline{\Psi}(n)$
<i>S_m</i> = <i><uu></uu></i> - <i>∐</i> 3	Order Parameter Tensor	$\overline{S} = \langle nn \rangle - I/3$
S_m	Scalar Order Parameter	\overline{S}

Lyotropic nematic PBG: 1-2 plane scattering patterns

Shear Rate = 1 s^{-1}

ż

Flow Left

Flow Right

6

Caputo & Burghardt, *Macromolecules*, **34**, 6684 (2001).

PBG: Reversal in 1-2 Plane

Orientation 'Trajectories'

Caputo & Burghardt, *Macromolecules*, **34**, 6684 (2001).

ERL Idea #1

- Polydomain materials
 - LCPs

Large beams currently average over distribution of domain/grain orientations

Microfocus to enable 'single domain'measurements? During shear?

ERL Idea #1... Issues

• What about third dimension?

- Good opportunities for detailed mapping of domain/grain structure in thin samples (*e.g.* evolution during annealing)
- Possible *in situ* studies on thin *solids* during deformation?
- But, how to realize controlled flows on liquid samples?

Beyond shear: Complex channel flows

- Materials processing often involves mixtures of shear & extension
- Extension can be much more effective than shear at aligning fluid microstructure
- 'Slit-contraction' and 'slitexpansion' flows: superposition of stretching on otherwise inhomogeneous shear flow

X-ray capable channel flow die

Interchangeable spacers define particular geometry:

Cinader & Burghardt, Macromolecules 31, 9099 (1998)

Typical experiment: Commercial LCP in channel flow

• Xydar commercial LCP

• Melt experiments at 350 C

Cinader & Burghardt, Macromolecules 31, 9099 (1998)

1:4 slit-expansion flow:Bimodal orientation state

ERL Idea #2

- Complex fluids + microfluidics + microfocus xray scattering
- Combined effects of flow + confinement on complex fluids
- Liquid crystals, lyotropic surfactants, etc.
- Platform for extremely precious (e.g. small quantity) samples?
- Typical microfluidics... 10s of microns
- ERL microfocus... more than adequate (overkill?)
- Question: necessary to move towards 'nanofluidics' for interesting confinement effects?

Polymer Bicontinuous Microemulsions

- Bates & Lodge, U. Minnesota
- Symmetric blends of immiscible linear homopolymers with corresponding diblock
- M_w adjusted so T_{ODT} of pure diblock ~ T_c of pure binary blend
- Typical isopleth phase diagram:

Quiescent neutron scattering

• PEE-PDMS: • Teubner-Strey model:

Morkved et al., Faraday Disc. 112, 335 (1999)

Steady shear: PEE-PDMS

Collaboration with T. P. Lodge & F. S. Bates, U. Minnesota

Caputo et al., Phys Rev. E, 66, 041401 (2002)

Model: Pätzold & Dawson, Phys. Rev. E 54, 1669 (1996)

PS-PI Microemulsion: X-ray Photon Correlation Spectroscopy

- Beamline 8-ID
- Simon Mochrie, Yale

Speckle pattern

125°C 17 ms exposure 850 images/series

 $g_2(\Delta t) = \frac{\langle I(t)I(t+\Delta t)\rangle}{\langle I(t)^2\rangle}$

PS-PI Microemulsion: X-ray Photon Correlation Spectroscopy 125°C

PS-PI Microemulsion: X-ray Photon Correlation Spectroscopy

Dependence of Decay Time (τ) on q 125°C

Direct probe of equilibrium dynamics at length scales of interest.

Coherent Scattering & Flow

Consider dilute spherical particles... (Berne & Pecora, Ch. 5) Heterodyne correlation function (independent scattering):

$$F_{1}(\mathbf{q},t) = \sum_{j=1}^{N} I_{j} \left\langle \exp\left\{i\mathbf{q} \cdot \left[\mathbf{r}_{j}(t) - \mathbf{r}_{j}(0)\right]\right\} \right\rangle = \sum_{j=1}^{N} I_{j} F_{sj}(\mathbf{q},t)$$

Fourier transform pair
$$G_{s}(\mathbf{R},t) = \left\langle \delta(\mathbf{R} - \left[\mathbf{r}_{j}(t) - \mathbf{r}_{j}(0)\right]\right\rangle \quad \text{(Probability of particle displacement } \mathbf{R} \text{ in time } t\text{)}$$

With no flow, $G_s(\mathbf{R},t)$ satisfies diffusion equation...

$$\frac{\partial}{\partial t}G_s(\mathbf{R},t) = D\nabla^2 G_s(\mathbf{R},t); \quad G_s(\mathbf{R},0) = \delta(\mathbf{R})$$

Fourier transformation & solution gives:

 $F_{sj}(\mathbf{q},t) = \exp(-q^2 Dt) \text{ Thus...} \qquad F_1(\mathbf{q},t) \sim \exp(-q^2 Dt) \qquad \text{(Heterodyne)}$ $F_2(\mathbf{q},t) = \left|F_1(\mathbf{q},t)\right|^2 \sim \exp(-2q^2 Dt) \qquad \text{(Homodyne)}$

Added Flow...

 $G_s(\mathbf{R},t)$ now satisfies *convection*-diffusion equation...

$$\frac{\partial}{\partial t}G_s + \nabla \cdot (\mathbf{V}G_s) = D\nabla^2 G_s; \quad G_s(\mathbf{R}, 0) = \delta(\mathbf{R})$$

For small scattering volume, linearize velocity field:

$$\mathbf{V} = \overline{\mathbf{V}} + \mathbf{\Gamma} \cdot \mathbf{R}$$
Mean velocity Velocity gradient tensor

With only uniform velocity ($\Gamma = 0$), solution becomes...

 $F_{sj}(\mathbf{q},t) = \exp(i\mathbf{q}\cdot\overline{\mathbf{V}}t - q^2Dt)$

Heterodyne spectrum shows Doppler shift: $F_1(\mathbf{q},t) \sim \cos(\mathbf{q} \cdot \overline{\mathbf{V}}t) \exp(-q^2 Dt)$

(Recent work from Mark Sutton at APS Sector 8 demonstrates this in XPCS)

(Uniform flow has no effect on homodyne spectrum...)

With velocity gradients...

Homodyne spectrum now is affected at leading order; under many conditions, this can dominate the measured correlation function.

Fuller & Leal, *JFM* **100**, 555-575 (1980):

$$F_2(\mathbf{q}, t) = \left| \int d\mathbf{R} I(\mathbf{R}) \exp\{-i\mathbf{q} \cdot \mathbf{\Gamma} \cdot \mathbf{R} t\} \right|^2$$

Beam intensity profile Select va

Select various 'projections' of Γ depending on scattering geometry.

Correlation function shows Gaussian decay:

$$F_2(\mathbf{q},t) \sim \exp(-q^2 \gamma^2 L^2 t^2) \qquad \qquad \begin{array}{l} \gamma = \text{characteristic deformation rate} \\ L = \text{length scale of scattering volume} \end{array}$$

Allows measurement of velocity gradients provided...

$$\tau_{\gamma} = \frac{1}{q \gamma L} << \tau_D = \frac{1}{q^2 D}$$

(Note, as $q \rightarrow 0$, convection always dominates over diffusion, and will set time scale for decay of correlation function.)

Would this ever be interesting?

One possible application: 'Shear-banding' in complex fluids

Uniform shear:

- Localized band of high velocity gradient
- Constitutive instability and/or phase separation

Frequently found in solutions of wormlike micelles...

Concept: spatially-resolved, simultaneous measurements of structure via conventional SAXS and local velocity gradient via homodyne correlation function.

Can it work??

Reality check... Correlation time: $\tau_{\gamma} = \frac{1}{q\gamma L}$

Suppose $q = 0.1 \text{ nm}^{-1}$ (typical SAXS)...

<u>L = 100 μ</u>	$L = 10 \ \mu$	$L = 1 \mu$
$\gamma = 1 \text{ s}^{-1}, \ \tau_{\gamma} = 10^{-4} \text{ s}$	$\gamma = 1 \text{ s}^{-1}, \ \tau_{\gamma} = 10^{-3} \text{ s}$	$\gamma = 1 \text{ s}^{-1}, \ \tau_{\gamma} = 10^{-2} \text{ s}$
$\gamma = 100 \text{ s}^{-1}, \tau_{\gamma} = 10^{-6} \text{ s}$	$\gamma = 100 \text{ s}^{-1}, \tau_{\gamma} = 10^{-5} \text{ s}$	$\gamma = 100 \text{ s}^{-1}, \tau_{\gamma} = 10^{-4} \text{ s}$

Competing objectives...

- want faster than intrinsic sample dynamics
- want high spatial resolution
- require coherence

Unknowns...

Maximum time resolution for XPCS? (detectors?) Effect of elongated scattering volume? If coherence imperfect, does coherence length replace *L*?

Summary

- *In situ* synchrotron scattering during flow yields detailed insights into microscopic origins of rheological properties of complex fluids
- Ideas...
 - Microfocus... single 'domain' dynamics?
 - Hard for flow...
 - Microfocus + microfluidics + complex fluids?
 - Should work; already possible?
 - Coherent scattering during flow?
 - Access to local velocity gradients from homodyne spectrum...
 - Many questions...

Real processing: *In situ* injection molding

WAXS Mold + Detector (Close up)

Undulator Beamline 5ID-D of DND-CAT

16° trenches (on both the mold and wedge block) allow for scattered X-rays to readily exit the mold

14 14 14

Rendon & Burghardt, in preparation (2006)

Injection mold details

Assembled X-ray Mold & Wedge Block (side view)

Tie Bars

Representative experiment: Injection molding of Vectra A[®]

Location along mold: -23 mm away from die entrance

> QuickTime™ and a decompressor are needed to see this picture.

Molding Parameters:

Fill time = 4 sec

$$T_{melt} = 285 \ ^{\circ}C$$

 $T_{nozzle} = 300 \ ^{\circ}C$
 $T_{mold} = 90 \ ^{\circ}C$

Data acquisition rate: 12 frames/sec Video clip slowed down by factor of 2.4

Rendon & Burghardt, in preparation (2006)

PS-PI Microemulsion: Structure during oscillatory shear

QuickTime[™] and a decompressor are needed to see this picture.

PS-PI Microemulsion: Structure during oscillatory shear

