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Outline

● Fourier Transform Holography
An ideal microscopy technique for an ERL

● Soft X-Ray ERL Beam Line
Unique capabilities for soft matter & magnetism

● Magnetization Dynamics
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Lens-based microscopy – Real space imaging

• Lens quality determines spatial resolution of microscope
• Zone plate efficiency problematic below 10 nm spatial resolution

ERL specific:
• Full field TXM requires incoherent source
• STXM benefits from coherence, but ‘slow’ as a scanning technique
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Lens-less microscopy – Fourier space imaging
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Lens limits microscope performance
• lens degradation LCLS
• achievable spatial resolution

Replace lens with a two-dimensional detector
to record scattered radiation in Fourier space

Potential for wavelength limited resolution: 
Highest detected momentum transfer (Fourier
component) defines spatial resolution. 

Idea:

coherent
illumination



Fourier Transform x-ray spectro-holography



Single Fourier transformation of scattering intensities yields the
auto-correlation of sample, which contains image of sample due 
to  the off-axis geometry in FT holography. (correlation theorem) 

Intensity in image center, which contains 
self-correlation of apertures, is truncated. 
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Digital image reconstruction

10% - 90% intensity rise over about 50 nm



Wave on detector is complex, but only intensity 
is measured, phase information is lost

Phase problem in X-ray scattering:

Solutions:

2) Iterative Phase Retrieval (Sayers 1952)
• Use iterative algorithm to retrieve scattering phases from 

additional scattering intensities
• Detected momentum transfer defines spatial resolution
• Surround sample with ‘known’ support  and measure

additional scattering intensities (‘oversampling’)

1) X-ray Holography (Gabor 1948, Stroke 1965)
• Phase information is encoded in detectable 

intensity fluctuations  
• True imaging technique
• Reference size determines spatial resolution  

Solving the phase problem



Phase Reconstruction

Autocorrelation

Coherent Scattering

from coherent x-ray scattering alone

Sample

Holography and phase retrieval

Appl. Phys. Lett., 84, 3373 (2004)

State-of-the-art phase retrieval

• Miao at Spring 8
• Elser, Chapman,    at ALS   

Howells, Kirz



• True imaging technique

• Wavelength limited spatial resolution
Deconvolution and phase retrieval algorithm 

• Nanometer resolution with micron stability  
Setup is basically insensitive to vibrations 
or thermal drifts

• Wide applicability
- Sample on/in/behind object aperture
- Rapid sample change, since no alignment
- No space constraints around sample
- UHV to ambient pressure (to be shown)

• Reflection geometry
Thin film and surface sensitivity

• Inverted structure
Sample and reference on transparent support

Key properties of Fourier transform X-ray holography



Multiple reference FT holography

Autocorrelation

Sample
1μm



5 μm

SEM

Multiple reference Fourier transform holography

< 105 photons
on detector

Image signal improves with
number of references 

1 image
5 images
108 photons
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Patterned magnetic storage media

M. Albrecht et al., Nature Mater. 4 (2005) 203.
T. Ulbrich et al., PRL.  96 (2006) 077202

Autocorrelation 9 nm Co/Pd ML on Ø 58 nm PS spheres
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Benefits of soft x-ray energy range



Tuning of cross sections

• Sensitivity of absorption cross section to
elemental/chemical composition and
presence of charge/spin ordering exploited
in soft x-ray spectromicroscopy

• Scattering cross section exhibits same
dependences, which can be used to tune
the scattering contrast.

on res.

below res.
(phase) above res

PS-b-P2VP
(1μm x 1μm)



Phase contrast soft x-ray holography

real part of AC
“Attenuation”

imaginary part of AC
“Phase shift”

FTH yields autocorrelation (correlation theorem):   a ∗ a = Ŧ-1 (|Ŧ(a)|2)

777.65 eV

Refractive index is complex:  n  = 1 - δ + iβ

C. Mertens et al
PRB

On resonance
λx = 15 nm

Co



Phase contrast soft x-ray holography

real part of AC
“Attenuation”

imaginary part of AC
“Phase shift”

FTH yields autocorrelation (correlation theorem):   a ∗ a = Ŧ-1 (|Ŧ(a)|2)

C. Mertens et al
PRB

Refractive index is complex:  n  = 1 - δ + iβ

Before resonance
λx = 600 nm

Imaging with phase contrast before absorption resonance
reduces absorbed energy by factor of ~20

Co



Magnetic phase transitions

T ≈ TC
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• Image of critical fluctuations is computer simulation of Ising model
(Web page of Schwabl, TU Munich).

• Critical fluctuations in 3D are expected to be small and fast
• In 2D fluctuations expected to be larger

→
←
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2D critical magnetic fluctuations: Size and dynamics

Input for scaling laws:
ξ0 is range of spin correlation in ferromagnetic phase
Relaxation time     from FMR line width
Susceptibility    (T) for 1.8 ML Fe/W from Back et al., Nature (95)χ
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Photoconductive Auston Switch

Peak Current: 100 - 1000 mA
Pulse Rise Time: 5 ps (30 ps currently) 
Peak Field:   .02 - .2 T

Photoemission into Vacuum

Potential for >>10 A peak current
Pulse in the sub picosecond range

Magnetic field pulses by laser-generated current pulses



Conclusions

• Lensless imaging is full field microscopy technique requiring coherent source

• Soft x-ray energy range contains relevant resonances of

- K edges of light elements    → organic matter

- L23 edges of TM    → magnetism

• Most important ERL characteristics

- high coherent flux

- fsec pulse length

• Equilibrium and relaxation dynamics of magnetization phenomena



Experiment

• Grow thin film with Tc just
above room temperature

• Let sample temperature
drift slowly through Tc

• Measure
• Magnetization
• Susceptibility

• Record time dependence
of I(q)

T/TC
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→
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Object frame size and Fourier transformation
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Sampling finer than the Bragg frequency (Shannon sampling)

Real Space ‘K’ Space

‘Oversampling’ overcomes X-ray phase problem



N x N
Object in 
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Matrix

2N x 2N
Detector

Pixel

FFT

FFT -1

Force intensity
outside of object
to ‘known’ value

Set magnitude
to speckle pattern

Random
Start Phase

‘Real’ Space ‘Fourier’ Space

Algorithm idea and method developed by Sayre, Gerchberg & Saxton, Bates, Fienup, Miao

Algorithm explained for example by J. Miao et al, Phys. Rev. B 67, 174104 (2003)

Iterative algorithm for phase reconstruction


