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Outline

e Fourier Transform Holography
An ideal microscopy technique for an ERL

e Soft X-Ray ERL Beam Line
Unique capabilities for soft matter & magnetism

e Magnetization Dynamics
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Lens-based microscopy — Real space imaging

Condenser .
Optics Imaging

X-rays

 Lens quality determines spatial resolution of microscope
» Zone plate efficiency problematic below 10 nm spatial resolution

ERL specific:
e Full field TXM requires incoherent source

« STXM benefits from coherence, but ‘slow’ as a scanning technique




Lens-less microscopy — Fourier space imaging
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Idea:

Replace lens with a two-dimensional detector
to record scattered radiation in Fourier space

Potential for wavelength limited resolution:
Highest detected momentum transfer (Fourier
component) defines spatial resolution.




Fourier Transform x-ray spectro-holography
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Digital image reconstruction @

Single Fourier transformation of scattering intensities yields the
auto-correlation of sample, which contains image of sample due
to the off-axis geometry in FT holography. (correlation theorem)

Autocorrelation
(Patterson map)
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Intensity in image center, which contains microns
self-correlation of apertures, is truncated.



Solving the phase problem G
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Phase problem in X-ray scattering:

Wave on detector is complex, but only intensity
is measured, phase information is lost

Solutions:

1) X-ray Holography (Gabor 1948, Stroke 1965)

* Phase information is encoded in detectable
intensity fluctuations

 True imaging technique
» Reference size determines spatial resolution

2) Iterative Phase Retrieval (Sayers 1952)
» Use iterative algorithm to retrieve scattering phases from
additional scattering intensities
» Detected momentum transfer defines spatial resolution

» Surround sample with ‘known’ support and measure
additional scattering intensities (‘oversampling’)



Holography and phase retrieval

from coherent x-ray scattering alone
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Coherent Scattering
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Appl. Phys. Lett., 84, 3373 (2004)

State-of-the-art phase retrieval

* Miao at Spring 8
 Elser, Chapman, at ALS
Howells, Kirz

Phase Reconstruction
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Key properties of Fourier transform X-ray holography

* True imaging technique

« Wavelength limited spatial resolution
Deconvolution and phase retrieval algorithm

 Nanometer resolution with micron stability
Setup is basically insensitive to vibrations
or thermal drifts

* Wide applicability
- Sample on/in/behind object aperture
- Rapid sample change, since no alignment
- No space constraints around sample
- UHV to ambient pressure (to be shown)

* Reflection geometry
Thin film and surface sensitivity

* Inverted structure
Sample and reference on transparent support
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Multiple reference Fourier transform holography @
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Image signal improves with
number of references

1 imalge
5 images
108 photons




Sample and reference multiplexing
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Patterned magnetic storage media @
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Benefits of soft x-ray energy range

X-ray Magnetic Circular Dichroism

Normalized Electron Yield
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Tuning of cross sections

 Sensitivity of absorption cross section to
elemental/chemical composition and
presence of charge/spin ordering exploited
in soft x-ray spectromicroscopy

« Scattering cross section exhibits same
dependences, which can be used to tune
the scattering contrast.
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Phase contrast soft x-ray holography @
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Refractive index is complex: n =1-0+iB

_l L] ) ] | l | ] L] | | I ] ] ] | ] I ] ]
1x10° |
= N
f{ ok
o [
< . F
-1x10° | .
[ 1 C. Mertens et al
2x10° F {1 PRB

777.65eV

FTH yields autocorrelation (correlation theorem): a * a = F7' (|F(a)|?)

real part of AC imaginary part of AC
“Attenuation” “Phase shift”

F On resonance

A, =15 nm




Phase contrast soft x-ray holography @
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Refractive index is complex: n =1-0 +if3
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Imaging with phase contrast before absorption resonance
reduces absorbed energy by factor of ~20

real part of AC imaginary part of AC
“Attenuation” “Phase shift”

Before resonance
A, =600 nm




Magnetic phase transitions

Susceptibility

1.0

Magnetization

M(T)/M,

 Image of critical fluctuations is computer simulation of Ising model
(Web page of Schwabl, TU Munich).

* Critical fluctuations in 3D are expected to be small and fast
* In 2D fluctuations expected to be larger



2D critical magnetic fluctuations: Size and dynamics @
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Input for scaling laws:

¢, Is range of spin correlation in ferromagnetic phase

Relaxation time Ki from FMR line width

Susceptibility 1(T) for 1.8 ML Fe/W from Back et al., Nature (95)




Magnetic field pulses by laser-generated current pulses
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Photoconductive Auston Switch

patterned laser
samples

H electron
flow

photoconductive
"Auston" switch

spin-injection
sample

polarizer

Peak Current: 100 - 1000 mA
Pulse Rise Time: 5 ps (30 ps currently)
Peak Field: .02-.2T

Photoemission into Vacuum

accelerating
potential
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Potential for >>10 A peak current
Pulse in the sub picosecond range



Conclusions QC

* Lensless imaging is full field microscopy technique requiring coherent source

» Soft x-ray energy range contains relevant resonances of
- K edges of light elements — organic matter

-L,;edgesof TM — magnetism

* Most important ERL characteristics

- high coherent flux

- fsec pulse length

 Equilibrium and relaxation dynamics of magnetization phenomena



Experiment

 Grow thin film with T_ just
above room temperature

» Let sample temperature
drift slowly through T,

 Measure

« Magnetization
« Susceptibility

» Record time dependence
of 1(q)

W




Object frame size and Fourier transformation QD
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Real space Fourier space

DFT

_ N XN
N x N Object - Fourier space
Contract
by 2 x 2
N x N Object
in DFT 2N x 2N
2N x 2N Fourier space

container




‘Oversampling’ overcomes X-ray phase problem QD
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Sampling finer than the Bragg frequency (Shannon sampling)

qy,max

NxN < g ‘DI:t;(clt\Lr’
Object qx,max
qy,max
N x N Object
in 2N x 2N
2N x 2N O, ma  Detector’
Container

Real Space ‘K’ Space



lterative algorithm for phase reconstruction
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Algorithm idea and method developed by Sayre, Gerchberg & Saxton, Bates, Fienup, Miao

‘Real’ Space

N x N
Object in
2N x 2N

Matrix

Force intensity
outside of object
to ‘known’ value

 ——_—

FFT

v

FFT

‘Fourier’ Space

Set magnitude
to speckle pattern

2N x 2N
Detector
Pixel

Algorithm explained for example by J. Miao et al, Phys. Rev. B 67, 174104 (2003)



