Status and Perspectives for XPCS New Possibilities for XPCS at the ERL ?

Towards The Ultimate XPCS Beamline

- Is (focusing) optics useful ?
- Can beam induced sample damage be avoided ?
- Which detector could we dream about (and what is available) ?
- Time structure ?
- How can the s/n ratio of XPCS be improved ?

The TROÏKA beamline

ID10A (open undulator beamline) comprises two stations: **TROÏKA I** and **TROÏKA III** TROÏKA I in user mode since 1994, TROÏKA III in operation since ~2002

Techniques:

TROÏKA I : High resolution diffraction and surface scattering with coherent X-rays, XPCS TROÏKA III : Small Angle X-ray Scattering, XPCS, Pink and White beam options

The ID10 undulator source

- U27 undulator (27 mm period), U35 undulator (35mm period), min. gap 11mm
- Revolver unit U27/U35, in-situ exchangeable

Partially coherent light: Coherence lengths

Transverse coherence length (v,h) : $l_{v,h} = \lambda L/\pi d_{v,h}$ (~2-150 µm) Longitudinal coherence length $l_1 = \lambda/(\pi \Delta \lambda/\lambda)$ (~1µm) $\beta \approx Vc/Vs$

Diffraction imaging with partially coherent X-rays

XPCS vs. other "dynamic" scattering techniques

Brilliance B = photons/sec / [source area × solid angle × bandwidth] Lateral coherence area $A_t = \pi l_h l_v / 4 = (\lambda L)^2 / (4\pi d_h d_v)$ (~200 µm²) N_c =photons in V_c ($V_c = A_t \times l_1$)

Coherent solid angle $\Omega_{\rm C} = A_t/L^2 = \lambda^2/(4\pi d_h d_v) = \lambda^2/16A_s$

 $N_c = B \times \tau_0 \times A_s \times \lambda^2 / 16 A_s \times \Delta v / v = B \lambda^3 / (16 \pi c) \quad \tau_0 = l_l / c (10^{-15} - 10^{-14} s)$

Coherent intensity $I_c = (N_c/V_c) \times c \times A_t$ = $B \times (\lambda/4)^2 \times (\Delta \lambda/\lambda)$ (~10⁹-10¹⁰ ph/s)

Coherent intensity decreases with decreasing λ (increasing energy) ! Coherent scattering is very Brilliance-hungry !

ESRF

Double mirror/thermal bender

Location: optics hutch 35m from source,

Typical working parameters: $\alpha = 3.5$ mrad (cut 4th harmonics)

1st mirror (500x50x115 mm), top cooled three stripes: Pd, Pt and Si. Thermal bender 2nd mirror: Piezo actuator to correct beam position via an ion-chamber BPM

Pink beam with $\Delta E/E=1.5\%$ Pink flux >1x10¹¹ ph/sec/100 μ m² BEAM DAMAGE !!

A flowcell for XPCS applications

Flow/mixing cell: mixing kinetics, Protein folding kinetics, etc.. Flowcell: To avoid beam-damage. How are XPCS results influenced by the flow ?

 $q \perp v : g^{(2)} \sim 1 + exp(-2\Gamma t)$ $q \parallel v : g^{(2)} \sim 1 + G(t)exp(-2\Gamma t)$; G(t) some Bessel function work in progress.....

(Fluerasu, Moussaid, Falus & Madsen)

XPCS Highlights

Critical dynamics in Fe₃Al S. Brauer et al. PRL (1995)

Diffusion of colloidal Pd *T. Thurn-Albrecht et al. PRL (1996)*

Dynamics of Block Copolymers micelles S. G. J. Mochrie et al. PRL (1997)

Hydrodynamic screening of charge-stabilized colloids D. O. Riese et al. PRL (2000)

Freezing of surface capillary waves *T. Seydel et al. PRB (2001)*

Smectic Membranes in Motion: Approaching the Fast Limits of X-Ray Photon Correlation Spectroscopy

Irakli Sikharulidze,¹ Igor P. Dolbnya,² Andrea Fera,¹ Anders Madsen,³ Boris I. Ostrovskii,^{1,4} and Wim H. de Jeu¹

Viscosity of a Liquid Crystal near the Nematic–Smectic A Phase Transition

XPCS is signal-to-noise limited

signal-to-noise ratio of $g^{(2)}(\tau)$

$$s/n = C I \sqrt{N} \sqrt{T/F}$$

- C: Contrast (Coherence factor)
- I: Intensity
- N: Number of detectors (1 for OD, number of pixels for CCD)
- T: Acquisition time
- F: Frame rate (varies with lag-time τ)

2D detection is the way to go !!!

Good idea, BUT

- Only a big advantage if the scattering is "2D" (e.g. transmission SAXS)
- Direct illumination CCDs are fragile (not user friendly)
- Limited by 2D detector speed

Scientific case: Micro- and nano rheology. Comparison of bulk and surface glass dynamics Mason & Weitz, PRL (1995); Papagiannopoulos et al, JPCM (2005)

SiO₂ nano-particles (18nm) in a glass forming polymer solvent

ESRF

(256 x 256 pixels) 55 μm pixel size 2 MHz/pixel count rate (20 bit) Photon counting Upper and lower energy threshold

Multichip assembly for X-ray imaging based on a photon-counting pixel array

(C. Ponchut, ESRF)

□ >1 kHz frame rate/chip frame rate

Readout speed limited by electronics. New and faster electronics available ultimo 2006

Still 2D detectors are too slow or inconvenient for certain applications Is there a way to increase s/n by increasing the QualityFactor *CI*?

(signal-to-noise ratio of g⁽²⁾)

$$s/n = C I \sqrt{N} \sqrt{T/F}$$

- C: Contrast (Coherence factor)
- I: Intensity
- N: Number of detectors (1 for 0D, number of pixels for CCD)
- T: Acquisition time
- F: Frame rate (varies with lag-time τ)

Sample: PMMA (HS) colloids in cis-decaline, Radius \approx 1500 Å

Incident flux: 6x10⁸ ph/sec/100µm² (100mA, 8keV, no focusing)

 $\Gamma = D(Q)Q^{2}$ $D(Q) = H(\infty)D_{0}$ $D_{0} = k_{B}T / (6\pi\eta R)$

ESRF A. Mad

Is it possible to increase the QualityFactor on the detector side?

$$C(\Omega) \approx \frac{C_0}{\Omega + \Omega_0} \quad I(\Omega) = I_0 \Omega \qquad QF = CI = C_0 I_0 \frac{\Omega}{\Omega + \Omega_0} \rightarrow C_0 I_0 \text{ for } \Omega >> \Omega_0$$

Is it possible to increase the QualityFactor on the incident side?

Fresnel Zone Plate, pure Si (phase object) f=1.5 m @ 8keV, OD=580 μ m, Δr_n =400nm. Efficiency ~25%

Upstream slit to define horizontal sec. source

Beamsize ~1 x 1 μm

Intensity ~10¹¹ ph/sec

Theoretical explanation: In progress......

Influence of the speckle size

Large, intense speckles are good for XPCS

Diffusion in a colloidal suspension probed using a FZP

The ESRF Storage Ring: Limitations for fast XPCS

~850 m circumference, 6 GeV, 32 straight sections

Modes:

Uniform (200mA, lifetime >70 hrs) (Very good for XPCS)

Data taken with APD detector and 2GHz scaler board

.....and with the ERL one could dream about

XPCS from non-crystalline, amorphous materials i.e. systems without long range correlations (Thomson scattering)

Scientific case:

- nano-scale hydro-dynamics in supercooled liquids and glasses (surface tension and viscosity in the nano-world)
- unique possibility to measure q-dependent dynamics

Minimum requirements:

- two-three orders of magnitude in coherent flux
- slow dynamics (glass transition)

Challenges (headaches):

- Detectors
- Beam damage

Concluding remarks

The ERL will offer:

- A quasi DC source with infinite lifetime (advantage for XPCS)
- 2-3 orders of magnitude more in coherent intensity than ESRF/APS
- Possibility to perform XPCS at high E (>25keV, buried interfaces...)
- Too large coherence lengths for some applications → focusing

One has to think about:

- Beamline design
- Flexible, focusing optics build in from the beginning
- Optimized use of detectors (pixel detectors/APD detectors)
- How to avoid beam damage (high E?)
- Everyone needs to think about coherence (ensemble averaging may be needed for certain experiments)

The End

