Organic Electronics:

Fundamental Issues and Emerging Opportunities

George Malliaras

Department of Materials Science and Engineering Cornell University

Email: ggm1@cornell.edu

Acknowledgments

Postdocs

Hon Hang Fong Maria Nikolou Aram Amassian

Graduate students

Jeff Mabeck Alex Mayer Jason Slinker Matthew Lloyd Dan Bernards John DeFranco Alexis Papadimitratos Seiichi Takamatsu

Visiting Scientists

Kiyotaka Mori (Panasonic) Satoyuki Nomura (Hitachi) Michael Pienn (U. of Gratz)

Cornell

Héctor Abruña (Chemistry) Jack Blakely (Materials Science) Jim Engstrom, Paulette Clancy (ChemE) Joel Brock (Applied Physics)

DuPont Displays Yulong Shen

IBM Research (T.J. Watson) Ricardo Ruiz

<u>University of Illinois (MSE)</u> Zhengtao Zhu <u>Princeton</u> Stefan Bernhard (Chemistry)

Simmons College Velda Goldberg (Physics) Len Soltzberg (Chemistry)

University of Cambridge Richard Friend

CHESS

Alexander Kazimirov Detlef Smilgies Daniel Blasini

University of Vermont Randy Headrick

University of Kentucky John Anthony

LMU Bert Nickel

Outline

- Introduction to organic semiconductors
- Interplay between electronic and ionic carriers

 Electroluminescence in ionic transition metal complexes
- Growth of films from complex materials

 Evolution of structure and morphology in pentacene films
- Conclusions

Electronics go everywhere

Pioneer

Electrolux

e-Ink & Lucent

Common organic semiconductors

Carbon as a semiconductor

• Hybridization: sp^2 and p_Z

• Particle in a box:

Tuning of optical properties

Table 1. Chemical structures and molecular weight characterization of regiospecific alkylated polythiophenes.

[n] R is n-cetyl. [b] Relative to polystycene standards.

R.E. Gill et. al., Adv. Mater. 6, 132 (1994).

Covion

Opportunities and challenges

- (+) Ease of processing
- (+) Tunability of electronic properties
- (+) Integration with biological systems
- (-) Low-end performance
- (-) Stability in devices

Will complement Si, not replace it

Outline

- Introduction to organic semiconductors
- Interplay between electronic and ionic carriers

 Electroluminescence in ionic transition metal complexes
- Growth of films from complex materials

 Evolution of structure and morphology in pentacene films
- Conclusions

Organic light emitting diodes (OLEDs)

Pioneer (1997)

Sony (2004)

Motorola (2001)

Pioneer (2001 - demo)

OLEDs vs. liquid crystals

Kodak Professional

OLEDs for lighting

OLED structure and operation

ITO

Need for low work function cathode

Low work function cathode required for efficient electron injection

Degradation of the cathode

Pictures courtesy of Dr. Homer Antoniadis.

Can we make OLEDs with air-stable cathodes?

OLEDs with air-stable cathodes

FEATURE ARTICLE: J. Slinker, D. Bernards, P.L. Houston, H.D. Abruña, S. Bernhard and G.G. Malliaras, *Chem. Comm.* **19**, 2392 (2003).

Ionic transition metal complexes

Mixed conductors!

S. Bernhard, X. Gao, G.G. Malliaras, and H.D. Abruña, J. Am. Chem. Soc. **124**, 13624 (2002). Also:

E. S. Handy, A. J. Pal and M. F. Rubner, *J. Am. Chem. Soc.* **121**, 3525 (1999). M. Buda, G. Kalyuzhny and A.J. Bard, *J. Am. Chem. Soc.* **124**, 6090 (2002).

Device model

Cathode

Anode

t = 0 sec

Cathode

Anode

Also: J.C. deMello, N. Tessler, S.C. Graham and R.H. Friend, *Phys. Rev. B.* **57**, 12951 (1998). Q.B. Pei, G. Yu, C. Zhang, A.J. Heeger, *Science* **269**, 1086 (1995).

Device model (II)

Ionic transition metal complexes

Device model (III)

Device model (IV)

A. Gorodetsky, S. Parker, J. Slinker, D. Bernards, M.H. Wong, S. Flores-Torres, H.D. Abruña, and G.G. Malliaras, *Appl. Phys. Lett.* 84, 807 (2004).

No rectification. These are light emitting resistors!

Cornell University

Au

Device model (V)

Narrow recombination zone

Device characteristics

Turn-on time

Addition of ionic liquids improves turn-on time

Cascaded devices

D.A. Bernards, J.D. Slinker, G.G. Malliaras, S. Flores-Torres, and H.D. Abruña, *Appl. Phys. Lett.* **84**, 4980 (2004).

Operation straight from the outlet

J. D. Slinker, J. Rivnay, J.A. DeFranco, D.A. Bernards, A. Gorodetsky, S.T. Parker, M. Cox, R. Rohl, S. Flores-Torres, H.D. Abruña and G.G. Malliaras, *J. Appl. Phys.* **99**, 074502 (2006).

Devices with laminated contacts

D.A. Bernards, T. Biegala, Z.A. Samuels, J.D. Slinker, G.G. Malliaras, S. Flores-Torres, H.D. Abruña, and J.A. Rogers, *Appl. Phys. Lett.* **84**, 3675 (2004).

Lifetime

New peaks appear in degraded device

Lifetime (II)

$[(bpy)_2(H_2O)RuORu(OH_2)(bpy)_2]^{4+}$ Oxo-bridged dimer

Dimer identified in degraded devices

Lifetime (III)

L. Soltzberg, J.D. Slinker, S. Flores-Torres, D.A. Bernards, G.G. Malliaras, H.D. Abruña, J.S. Kim, R.H. Friend, M. Kaplan and V Goldberg, *J. Am. Chem. Soc.*, in press.

Lifetime (IV)

Raman also shows dimer in degraded devices

Lifetime (V)

Lifetime (VI)

Dimer quenches emission

Lifetime (VII)

Can we synthesize intrinsically stable materials?

Lifetime (VIII)

D.R. Blasini, D.-M. Smilgies et al.

See poster

Intermediate range order – changes with exposure to ambient

Take home message (1)

Interplay between ionic and electronic charges in mixed

conductors creates exiting opportunities for electroluminescent

devices

• Structure of these materials/ how is it modified by ion motion?

• Changes in chemistry/structure during operation?

Outline

- Introduction to organic semiconductors
- Interplay between electronic and ionic carriers

 Electroluminescence in ionic transition metal complexes
- Growth of films from complex materials

 Evolution of structure and morphology in pentacene films
- Conclusions

Organic thin film transistors (OTFTs)

Organic thin film transistors (II)

Side view

Pentacene crystal structure

Pentacene

J. Cornil et al., J. Am. Chem. Soc., 123, 1250 (2001).

C.C. Mattheus et al., Acta Cryst. C57, 939 (2001).

Morphology of evaporated films

Coherence among seemingly different grains

Cornell University

Dependence of mobility on thickness

Pentacene also for photovoltaic cells

Pentacene nucleation

Ruiz et al, Phys.Rev. B 67, 125406 (2003).

How does the substrate affect film growth?

Modes of growth

The two extremes:

Layer by layer (2D)

Good substrate coverage Good connectivity Best for OTFTs

Islands (3D)

Poor substrate coverage Poor connectivity Worst for OTFTs

Cornell University

R. Ruiz, et al., Chem. Mater. 16, 4497 (2004).

Pentacene on Si (100)

In situ growth studies

In-situ growth, morphology and electrical measurements

Cornell University

Anti-Bragg x-ray scattering

Growth mode of pentacene on SiO₂

Early growth is layer-by-layer

d = 2.3 ML

Cornell University

Pentacene on SiO₂

Origin of layer-by-layer growth

- In inorganics, layer-by-layer growth requires strong interaction with the substrate
- In pentacene, it is the strong anisotropic interaction that leads to layer-by-layer growth:

Organics: building blocks with complex shape (plenty to choose from)
 Anisotropic interactions are important
 Exciting growth physics
 Cornell University

Pentacene crystal structure

Pentacene

J. Cornil et al., J. Am. Chem. Soc., 123, 1250 (2001).

C.C. Mattheus et al., Acta Cryst. C57, 939 (2001).

The "thin-film" phase

Only (00*l*) reflections: Film has layers that grow parallel to substrate

 $d_{001} \approx 15.7$ Å: "thin film" phase (bulk $d_{001} \approx 14.5$ Å)

C.D. Dimitrakopoulos et al., J. Appl. Phys. 80, 2501 (1996).

Coexistence of "thin-film" and bulk phases

Bouchoms et al., Synth. Met. 104, 175 (1999)

Is the thin film phase a strained meta-phase? How do the two phases evolve as a function of thickness?

Strain in heteroepitaxy

Cornell University

In-plane x-ray diffraction

Is the "thin-film" phase due to strain?

Al on GaAs

In-plane diffraction can reveal effects of strain

W.C. Marra et al., J. Appl. Phys. **50**, 6927 (1979).

In-plane diffraction in pentacene films

Two distinct phases that co-exist

Evolution of bulk phase with thickness

Evolution of bulk phase with thickness (II)

Model for evolution of bulk phase

Bulk phase nucleates at the substrate. It continues to nucleate as film gets thicker Bulk islands do not scatter in phase

Growth near the electrodes

Growth near the electrodes (II)

Growth near the electrodes (III)

× 0.500 µm/di∨ Z 15.000 nm/di∨

Creating model defects

Pentacene on SiO₂

Cornell University

Pentacene neglects steps on SiO₂ We can use stepped surfaces to create model defects

Take home message (2)

Organic semiconductors are interesting "building

blocks" for studies of thin film growth physics.

- Defects and their influence on charge transport?
- Structure at interfaces?

Acknowledgments

Career Development Award

Cornell Center for Materials Research

Cornell High Energy Synchrotron Source

Cornell University

Acknowledgments

Postdocs

Hon Hang Fong Maria Nikolou Aram Amassian

Graduate students

Jeff Mabeck Alex Mayer Jason Slinker Matthew Lloyd Dan Bernards John DeFranco Alexis Papadimitratos Seiichi Takamatsu

Visiting Scientists

Kiyotaka Mori (Panasonic) Satoyuki Nomura (Hitachi) Michael Pienn (U. of Gratz)

Cornell

Héctor Abruña (Chemistry) Jack Blakely (Materials Science) Jim Engstrom, Paulette Clancy (ChemE) Joel Brock (Applied Physics)

DuPont Displays Yulong Shen

IBM Research (T.J. Watson) Ricardo Ruiz

<u>University of Illinois (MSE)</u> Zhengtao Zhu <u>Princeton</u> Stefan Bernhard (Chemistry)

Simmons College Velda Goldberg (Physics) Len Soltzberg (Chemistry)

University of Cambridge Richard Friend

CHESS

Alexander Kazimirov Detlef Smilgies Daniel Blasini

University of Vermont Randy Headrick

University of Kentucky John Anthony

LMU Bert Nickel

Cornell University

Anti-Bragg from pentacene

Pentacene on SiO₂

Modeling pentacene growth

$$\frac{d\theta_{n}}{dt} = v\left(\theta_{n-1} - \theta_{n}\right) + v\alpha_{n}\left(\theta_{n} - \theta_{n+1}\right) - v\alpha_{n-1}\left(\theta_{n-1} - \theta_{n}\right)$$

Influence of substrate temperature

Pentacene on SiO₂

Thickness (Monolayers)

Influence of substrate temperature (II)

Influence of substrate

Pentacene on HTS

3D growth

Influence of substrate (II)

Thickness (Monolayers)

Influence of substrate (II)

In-plane x-ray diffraction in thin films

Evolution of bulk phase with thickness (II)

From width of peaks:

Evolution of bulk phase with thickness (III)

From integrated intensity:

