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Time-resolved Laue Crystallography:
Probing ligand migration and correlated protein 
motion in photolyzed carbon monoxy myoglobin
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European Synchrotron and Radiation Facility,
Grenoble,  FRANCE

• Time-Resolved X-ray (TReX) Studies



1 mm

X-ray Generation at ID09B (ESRF)

• 4-bunch mode (~ 30-nC/pulse; 704-ns spacing)
• Low-beta straight section (H source size: 130-μm FWHM)
• In-vacuum undulator (6-mm gap; 15-keV fundamental)
• Toroidal mirror (maximizes flux via single reflection)
• High-speed chopper (164-ns opening time with 100-μm vertical aperture)

~ 1010 photons focused to 
~100 μm spot (4-bunch mode)

30.5 m 27 m

Toroidal mirror chopper

2-m in-vacuum 
U17 undulator



a = b = 91.20 Å, c = 45.87 Å, α = β = 90º, γ = 120º; heme plane to a,b plane ∠ = 55°
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Packing of P6 Myoglobin Crystal
(D122N)



X-ray characteristics (ESRF)

• “Pink” beam peaked around 
~ 15 keV (0.8 Å) 

• ~1010 photons per shot; 
~ 8 shots per image

θ

125 mm

~1011 photons

Spot sizes:
~125-μm FWHM

λ=2d sinθ



Laue diffraction image of MbCO

ca. 4000 usable reflections 40 mm
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Pump-Probe Geometry

~6x1013 photons
(~ 20 μJ; 580 nm; ~0.8 mJ/mm2)

~3x1013 hemes in probed volume

X-rays:

~1010 photons/pulse

ΔT in pumped volume ~2 °C60 microns
120 microns
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Pump-induced Intensity Changes at 100 ps

ΔI = -80σ ... +80σ 40 mm
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PhotolyzedUnphotolyzedColor-coded maps superimposed: MbCO at 100 ps
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Global Tertiary structure changes of photolyzed MbCO 
are unresolvably fast (t = 100 ps)



Extending time-resolved Laue crystallography to 
the femtosecond time domain: What are the issues?

• Sample reversibility 
– nonlinear absorption damages chromophore and compromises sample

reversibility
– Can we record “single-shot” Laue diffraction images?

• Flux requirements
– High-dynamic range diffraction image requires ~16 shots at ESRF
– Can the Cornell ERL generate suitable X-ray pulse energy for “single-

shot” Laue diffraction?
• Repetition frequency limits (for non-exchangeable, crystalline samples)

– Limited by laser pulse energy deposited in the crystal 
• 3.3 Hz at ESRF with 100 micron spot size

– To what extent can tighter focusing boost the pump-probe repetition 
frequency?

• Group velocity mismatch between laser and X-ray pulses
– Which sample excitation geometries preserves maximum time resolution?



Intense femtosecond excitation converts MbCO (a) 
to met-Mb (b); (see darkening at the site of exposure).

• Photo-oxidation is 
triggered by multi-
photon absorption via 
a strongly-absorbing 
shot-lived (<100 fs) 
excited state

• Stretching the optical 
pulse shuts down this 
channel, but broadens 
the time resolution

• Can we record “single-
shot” Laue diffraction 
images?
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X-ray flux needed for “single-shot” Laue diffraction

• ESRF Flux (~1010 photons/shot)
– 30 nC at 6 GeV
– 2 m U17 undulator 
– 16 shots
– ~1011 incident photons

• ERL
– 10 nC at 5 GeV
– 100 m U17 undulator
– 1 shot 

“FAT” bunch

# X-ray Photons ∝ (bunch charge) x (undulator length)
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Optimum X-ray Focus (~20 micron spot?)

• Volume intercepted by 20 micron X-ray beam:
– Contains ~ 1.4x1012 hemes (37 mM for P6 MbCO)

• X-ray induced T-jump when focusing ~1x1011 photons at 8 keV 
down to 20 microns:
– ~ 50 K 

• Laser pulse energy required to photoexcite twice this volume 
(~2 photons/chromophore):
– ~2 μJ @ 525 nm
– T-jump of ~ 4 K
– ~30 Hz acquisition should be possible (requires fast readout 

detector)

200 μm
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Group Velocity Mismatch limits time resolution

nvis=   1.33
nx-ray= 1.00

200 μm

laser

X-ray

~0.7 ps ~80 fs

20 μm

100 μm

laser

~100 fs
X-ray

200 μm

laser



4th Generation X-ray source: Free Electron Laser
~1012 photons/shot

~100 fs pulse duration

LCLS at Stanford in 2009?
XFEL in Germany in 2012?



X-ray 
Characteristics

120 Hz

82 μm

~1.1x1012 ☺

0.1%
8.2 keV

~2x1010

~5%

8.2 keV
(U30) .

100 m
~1 nC

~100 fs ☺
14.35 GeV

LCLS

1 MHz

20 μm

-
-
-

8.27 keV
(U17) .

100 m
1 or 10 nC
~200 + fs
5.3 GeV

ERL

10 Hz1 kHzRepetition frequency

110 μm~60x100 μm Beam size at 
crystal/detector (VxH):

~1.2x1012 ☺-X-ray photons/pulse
0.09%-X-ray bandwidth:

12.4 keV-X-ray energy:
SASE1:

~0.9x1010~1.4x1010X-ray photons/pulse 
~5%~3%X-ray bandwidth (fund.):

15 keV 
(U20.9)

15 keV 
(U17)

X-ray energy 
(fundamental):

Spontaneous:
50 m2 mundulator length
~1 nC~28 nC ☺single bunch charge:

~100 fs ☺~150 ps /X-ray pulse duration:
10 GeV6 GeVElectron energy:   
XFELESRF



Outlook:

• Dual-mode operation of the Cornell ERL would allow no-compromise 
optimization of time-resolved capabilities (bunch charge, pulse 
compression, etc.)

• “Fat” bunch operation with a long undulator would enable single-
shot Laue diffraction with spontaneous radiation

• Structural studies of proteins on the chemical time scale with 
near-atomic resolution would unveil mechanisms of protein function 
at an unprecedented level of detail. Such information is 
desperately needed to establish a solid foundation for rational drug 
design.
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