Femtosecond Time-resolved Laue crystallography: Using an ERL to Watch Proteins Function on the Chemical Time Scale

<u>Philip Anfinrud</u> Laboratory of Chemical Physics, NIDDK National Institutes of Health, Bethesda, MD USA

OF REALTH & FLO

9.M930

Time-resolved Laue Crystallography: Probing ligand migration and correlated protein motion in photolyzed carbon monoxy myoglobin

- Time-Resolved X-ray (TReX) Studies

X-ray Generation at ID09B (ESRF)

~ 10¹⁰ photons focused to ~100 µm spot (4-bunch mode)

<u>λ</u> = 0.75...1.0 Å

- 4-bunch mode (~ 30-nC/pulse; 704-ns spacing)
- Low-beta straight section (H source size: $130-\mu m$ FWHM)
- In-vacuum undulator (6-mm gap; 15-keV fundamental)
- Toroidal mirror (maximizes flux via single reflection)
- High-speed chopper (164-ns opening time with 100- μ m vertical aperture)

X-ray characteristics (ESRF)

Laue diffraction image of MbCO

ca. 4000 usable reflections

40 mm

1. 1.	2 -15 -11			200	5 -23 -11		
-4 -6 -16			1 -14 -13	3 -19 -13 3 -18 -12	4 -20 -11	6 -:	25 -10
-4 -4 -14	-2 -9 -15	Saus 114	1 -13 -12	3 -17 -11	4 -19 -10	5 -21 -9	
	-2 -7 -13	-1 -11 -15		3 -16 -10			
		0 -12 -14	2 -15 -12	3 -15 -9		6 -24 -10	7 -27 -10
		0-11-13	2 -14 -1	10		6 -23 -9	7 -26 -9
-4 -4 -15	101	0 -9 -11 1 -	13 -13	4 -18	3 -10	5 -20 -9	6 -21 -6
-4 -3 -14 -3	-5 -14			4	-17 -9	5 -19 -8	
-4-5-14	0 1 000.35		0		4 -16 -8		6 -21 -7 7 -24 -7
-4 -2 -13	-2 -6 -13	-1 -8 -13	10 -10			1000	
	-2 -5 -12		grun pense /	3 -14 -9			-24 -8 7 -23 -6
Section.		0-6-8		4 -17 -1 3 -13 -8	0 5 -18 -8	5 -17 -6	8 -26 -7
	-2 -4 -11	1 -6 -11	2 -12	-10 -10 -10	-9		
TRANSI		0 -8 -11	1 -8 -8		5 - 17 - 7	A	6 -19 -5
-3 -1 -10	-1	-5 -10		3-14-10 3-12-7	15 -8		7 -22 -0
		0 -7 -10	2	-10 -8	4 -13 -5		
-3	-2 -12 -2 -2 -9	a state of	1 -9 -10	3-11-	-6 5 -16 -6	1	7 -21 -5
-6 0 -18		0 -8 -12				6 -18 -5	
Strain -	and the second second		1 -8 -9	2 -9 -7 ^{3 -12 -8}			State State State
5 B -4	-2 -1 -8			3 -10 -5	4 -13 -6	the publication	ARE STONE ST
1946.20	Contraction of	0 -5 -8					
1.175.1	and the second	0 -6 -11	1 -7 -8	3 -11 -7			All and a series of the
-4 2 -10			The Allenting		-	and the second	
1941 A.M.		-1 -2 -7	Contraction of	WE STATISTICS	4 -12 -5	7 -19 -4 10 -2	27 -5
-3 2 -7		States and	2 -10 -10		4 -11 -3	6 -16 -3	6 -16 -2
-4 3 -	9 -4 1 -13 ^{-3 -}	1 -13 -1 -4 -11 0 -6	-11 3 -12	-10	7 -19 -5		8 -21 -2
			1 -8 -11	2 -7 -5 4 -13 -8	5 -14 -5	10 -26 -4	and the second sec
States and states and		Contraction of the Contract	2 -9 -9				9 -23 -2

Color-coded maps superimposed: MbCO at 100 ps

- Sample reversibility
 - nonlinear absorption damages chromophore and compromises sample reversibility
 - Can we record "single-shot" Laue diffraction images?
 - Flux requirements
 - High-dynamic range diffraction image requires ~16 shots at ESRF
 - Can the Cornell ERL generate suitable X-ray pulse energy for "singleshot" Laue diffraction?
 - Repetition frequency limits (for non-exchangeable, crystalline samples)
 - Limited by laser pulse energy deposited in the crystal
 - 3.3 Hz at ESRF with 100 micron spot size
 - To what extent can tighter focusing boost the pump-probe repetition frequency?
 - Group velocity mismatch between laser and X-ray pulses
 - Which sample excitation geometries preserves maximum time resolution?

Intense femtosecond excitation converts MbCO (a) to met-Mb (b); (see darkening at the site of exposure).

- Photo-oxidation is triggered by multiphoton absorption via a strongly-absorbing shot-lived (<100 fs) excited state
 - Stretching the optical pulse shuts down this channel, but broadens the time resolution
- Can we record "singleshot" Laue diffraction images?

Sample reversibility

WH OF HEALTH GIR

- nonlinear absorption damages chromophore and compromises sample reversibility
- Can we record "single-shot" Laue diffraction images?
- Flux requirements
 - High-dynamic range diffraction image requires ~16 shots at ESRF
 - Can the Cornell ERL generate suitable X-ray pulse energy for "singleshot" Laue diffraction?
- Repetition frequency limits (for non-exchangeable, crystalline samples)
 - Limited by laser pulse energy deposited in the crystal
 - 3.3 Hz at ESRF with 100 micron spot size
 - To what extent can tighter focusing boost the pump-probe repetition frequency?
- Group velocity mismatch between laser and X-ray pulses
 - Which sample excitation geometries preserves maximum time resolution?

X-ray flux needed for "single-shot" Laue diffraction

X-ray Photons ∞ (bunch charge) x (undulator length)

ESRF Flux (~10¹⁰ photons/shot)

- 30 nC at 6 GeV
- 2 m U17 undulator
- 16 shots
- ~10¹¹ incident photons

ERL

OF HEALTH & FC&

٠

- 10 nC at 5 GeV
- 100 m U17 undulator
- 1 shot

"FAT" bunch

Sample reversibility

A DI REALTH & HOLE

- nonlinear absorption damages chromophore and compromises sample reversibility
- Can we record "single-shot" Laue diffraction images?
- Flux requirements
 - High-dynamic range diffraction image requires ~16 shots at ESRF
 - Can the Cornell ERL generate suitable X-ray pulse energy for "singleshot" Laue diffraction?
- Repetition frequency limits (for non-exchangeable, crystalline samples)
 - Limited by laser pulse energy deposited in the crystal
 - 3.3 Hz at ESRF with 100 micron spot size
 - To what extent can tighter focusing boost the pump-probe repetition frequency?
- Group velocity mismatch between laser and X-ray pulses
 - Which sample excitation geometries preserves maximum time resolution?

- (~2 photons/chromophore):
 - ~2 μ J @ 525 nm
 - T-jump of $\sim 4 \text{ K}$
 - ~30 Hz acquisition should be possible (requires fast readout detector)

Sample reversibility

WH OF HEALTH GIR

- nonlinear absorption damages chromophore and compromises sample reversibility
- Can we record "single-shot" Laue diffraction images?
- Flux requirements
 - High-dynamic range diffraction image requires ~16 shots at ESRF
 - Can the Cornell ERL generate suitable X-ray pulse energy for "singleshot" Laue diffraction?
- Repetition frequency limits (for non-exchangeable, crystalline samples)
 - Limited by laser pulse energy deposited in the crystal
 - 3.3 Hz at ESRF with 100 micron spot size
 - To what extent can tighter focusing boost the pump-probe repetition frequency?
- Group velocity mismatch between laser and X-ray pulses
 - Which sample excitation geometries preserves maximum time resolution?

4th Generation X-ray source: Free Electron Laser

~10¹² photons/shot ~100 fs pulse duration

XFEL in Germany in 2012?

LCLS at Stanford in 2009?

TESLA

TESLA XFEL

First Stage of the X-Ray Laser Laboratory

Technical Design Report

Supplement

DESY 2002 - 167 TESLA-FEL 2002 - 09 October 2 0 0 2

X-ray	VEGELA TSSA XFEL Hanna dan kena manan Technical Design Report Sophimus	LCLS		
Characterist	ics		- And a second	
	ESRF	XFEL	LCLS	ERL
Electron energy:	6 GeV	10 GeV	14.35 GeV	5.3 GeV
X-ray pulse duration:	~150 ps 🙁	~100 fs 😊	~100 fs 🙂	~200 + fs
single bunch charge:	~28 nC ☺	~1 nC	~1 nC	1 or 10 nC
undulator length	2 m	50 m	100 m	100 m
Spontaneous:				
X-ray energy (fundamental):	15 keV (U17)	15 keV (U20.9)	8.2 keV (U30) ☺	8.27 keV (U17) ☺
X-ray bandwidth (fund.):	~3%	~5%	~5%	
X-ray photons/pulse	~1.4×10 ¹⁰	~0.9×10 ¹⁰	~2x10 ¹⁰	
SASE1:				
X-ray energy:	-	12.4 keV	8.2 keV	-
X-ray bandwidth:		0.09%	0.1%	-
X-ray photons/pulse	_	~1.2×10 ¹² ©	~1.1×10 ¹² 🙂	-
Beam size at crystal/detector (VxH):	<mark>~60x100 μm</mark>	110 µm	82 μm	20 µm
Repetition frequency	1 kHz	10 Hz	120 Hz	1 MHz

BULLING WARD

٠

- Dual-mode operation of the Cornell ERL would allow no-compromise optimization of time-resolved capabilities (bunch charge, pulse compression, etc.)
- "Fat" bunch operation with a long undulator would enable singleshot Laue diffraction with spontaneous radiation
- Structural studies of proteins on the chemical time scale with near-atomic resolution would unveil mechanisms of protein function at an unprecedented level of detail. Such information is desperately needed to establish a solid foundation for rational drug design.

Acknowledgements

Post-Doctoral fellows

Dr. Friedrich Schotte NIH Time-resolved x-ray crystallography

Dr. Nara Dashdorj

Dr. Michael Wulff ESRF X-ray Instrumentation

Dr. Gerhard Hummer LCP, NIH MD simulations

Prof. John OlsonRice UniversityMyoglobin mutants(Dr. Jayashree Soman)Laue Data Analysis

Marco Cammarata

Time-resolved SAXS

ESRF

Harry Ihee KAIST PYP, bR

Prof. George Phillips Univ. Wisconsin Refinement (Roman Aranda and Elena Levin)

Collaborators