Challenges and Opportunities

for Time-Resolved Crystallography

at the Next Generation X-ray Sources

Reinhard Pahl

Consortium for Advanced Radiation Sources

The University of Chicago

The University of Chicago Reinhard Pahl ERL X-ray Science Workshop, Cornell 2006

Time-resolved crystallography

Despite of available static structures of biological macromolecules, the detailed mechanism by which they function often remains elusive.

Challenge:

- detect structural changes
- determine reaction mechanism

Need to capture molecules in action -

From snapshots to movies...

"Stopping Time" Gus Kayafas (Ed.) Photographs by Harold Edgerton

The University of Chicago

BioCARS

Reinhard Pahl

Time-resolved crystallography

Ultimate goal:

Determine (time-independent) structures of intermediates and reaction mechanism

Biological activity involves structural changes

Capture fast processes at ambient temperature without physical or chemical trapping of intermediates

⇒ Reaction initiation & Laue crystallography

The University of Chicago

BioCARS

Reinhard Pahl

Dimeric Hemoglobin Hbl

(from clam Scapharca Inaequivalvis)

Model for studies of cooperative protein behavior by time-resolved crystallography

- Cooperative ligand binding demonstrated in crystals
- Structural transitions involved in ligand binding and dissociation localized and not too large: crystals survive quaternary change
- Successful HbI-CO → deoxy HbI → HbI-CO transformation in the crystals
- Crystals diffract to atomic resolution (~1Å)

Knapp *et al.,* Biochem. 42 (2003) 4640-47 Knapp *et* al., PNAS 103 (2006) 7649-54

Experiments:

Beamline 14-ID, BioCARS, APS

James Knapp and William Royer U of Mass Medical School, Worcester, MA Vukica Srajer, Reinhard Pahl, BioCARS

BioCARS

The University of Chicago

Reinhard Pahl ERL X-ray Science Workshop, Cornell 2006

Hemoglobin (Hbl)

Key structural transitions with functional ramifications

The University of Chicago

Integrated difference electron density values [F_o(light)-F_o(dark)]

The University of Chicago

Photoactive Yellow Protein (PYP) Bacterial blue-light photo-receptor

Reinhard Pahl

The University of Chicago

BioCARS

The University of Chicago

Reinhard Pahl ERL X-ray Science Workshop, Cornell 2006

Green Fluorescent Protein (GFP)

A Switchable Fluorescent Reporter

- protein-protein interactions
- protein localization
- developmental biology
- gene regulation
- drug screening (HTS, HCS)
- pH sensing
- Ca²⁺ sensing
- single-molecule assays

Wiedenmann et al., PNAS 101 (2004) 15905-10 Nienhaus et al., PNAS 102 (2005) 9156-59

BioCARS The University of Chicago

Reinhard Pahl ERL X-ray Science Workshop, Cornell 2006

Enzyme Reactions

Key enzyme in cholesterol biosynthesis in mammals.

Enzyme is obligate dimer with the active site at the dimer interface.

On cofactor binding, the small domain closes over the NADH adenine ring and a 50 residue flap, disordered in the structure, closes over the active site.

Problem:

Reaction mechanism in current studies is not reversible. What is different from nature?

Only limited understanding about the reaction mechanism and function of domains.

Reinhard Pahl E

Enzyme Reactions

Methylamine dehydrogenase

500

Wavelength (nm)

C. Wilmot et al. (2006)

600

TTQ_{OX} (resting state)

Reinhard Pahl

ERL X-ray Science Workshop, Cornell 2006

700

Improved X-ray Sources: BioCARS 14-ID Beamline 2006

Insertion device

Tandem undulators U-23 & U-27 are replacing Undulator-A

 $E_{min, U23} = 11.96 \text{ keV}$ $E_{min, U27} = 6.83 \text{ keV}$

Optics

large KB-system (M_{vert}~ 5.2:1, M_{horz}~ 8.3:1) focal spot ~ 70 x 43 μm^2

10⁸ - 10¹⁰ photons/pulse at sample

 \Rightarrow ~ 1 x-ray pulse/image

Mechanics

Fast-Shutter: 153 ns spacing between bunches

APS Standard Operating Mode

24 bunches

The University of Chicago

New Experiment – Faster X-ray Shutter

3nd Generation – Synchronous Shutter

GeometryTIMETAL (Ti6Al4V)
triangle, 166 mm side
multiple aperture size
vacuum (< 10^{-3} Torr)Rep. Rate60,320 rpm (994.7 Hz)
T = 1.005 msPulse Width t_{open} = 190 – 420 ns, 0.46 – 11.5 µs, >ms

≥24 bunches

W. Schildkamp, R. Pahl, M. Wulff, B. Lindenau, ...

P. Anfinrud, F. Schotte, M. Wulff, B. Lindenau ...

The University of Chicago

BioCARS

Reinhard Pahl

The Experiment

Reinhard Pahl ERL X-ray Science Workshop, Cornell 2006

The Experiment

Reinhard Pahl

Data Collection Strategy

- **Pump:** *femtosecond* to *nanosecond* laser pulse at appropriate wavelength
- Probe: 120 ps or longer x-ray pulses
- Laser x-ray delay times: 100 ps to seconds
- 1 10 laser / x-ray pulses per image
- ~1 5 sec between laser pulses
- 40 60 images per data set 2-3 deg angular increment
- Time to collect dataset: 5 min – 1 hour elapsed time per data set (using conventional CCD detector)

BioCARS The University of Chicago

Reinhard Pahl

New X-ray Sources

BioCARS The University of Chicago

Reinhard Pahl ERL X-ray Science Workshop, Cornell 2006

New X-ray Sources

Fig.1 provides a schematic comparison of electron bunch size, in space and time, for storage ring and ERL sources. In the lower figure bunch intensity profiles are normalized to unity. 230fs refers to FWHM (100fs RMS). APS : $\epsilon_x = 8.135 \text{ nm.rad}$ $\epsilon_y = 0.065 \text{ nm.rad}$

ERL : $\epsilon_{x,y} = 0.051 \text{ nm.rad}$

Finkelstein et al., J.Phys.Chem.Sol. (2006)

Reinhard Pahl

New X-ray Sources

APS source (U23, 24-bunch)

1.031 x 10¹⁹ ph/s/mr²/0.1%/mm² σ_{xy} = 1465, 33 µm, σ'_{xy} = 49.1, 15.6 µrad

bandwidth at 12 keV ~235 eV, ^{∆E}/_E ≥ 1.96% beamline & optics ø1.4mm mask at 25.6m sample at 56m KB-system at 47-50m (M_{y} =5.2:1, M_{H} =8.3:1) focus (ideal) 176 x 6.3 µm²

photons at sample ... 8.3 x 10¹² ph/s/1.96%/µm²

 \Rightarrow 1.2 x 10⁸ ph/pulse within 10x10 μ m²

ERL source (5m, 22mmPPM, mode E)

5.898 x 10¹⁷ ph/s/mr²/0.1%/mm² σ = 65.9 µm, σ ' = 45.3 µrad

bandwidth at 12 keV ~270 eV, △E/_F ~2.25% beamline & optics sample at 50m KB-system at 47.5m (M~19:1) focus (ideal) 3.5 x 3.5 µm²

photons in focal spot ... 9.8 x 10¹² ph/s/2.25%/µm²

\Rightarrow 1.2 x 10⁸ ph/pulse

BioCARS Reinhard Pahl The University of Chicago

SPPS: First Experiments

Sub-Picosecond Pulse Source

Photoactive Yellow Protein (PYP)

crystal size200 x 650 μm²exposure3000 pulsesoscillation3 degmax. resolution~1.25 Å

X-rays

9.365 keV, $^{\Delta E}/_{E}$ ~1.5% ~80fs @ 10 Hz 2 x 10⁷ ph/pulse/2x2mm² \Rightarrow 2 x 10⁹ ph/image

R. Pahl et al. (2004)

Time-resolved Crystallography

The challenges ahead...

Source

specialized insertion devices

Optics

beamline design and quality of optical elements

Timing

flexible rep. rates 10Hz .. 1kHz .. 1 MHz variable bunch charge, pulse length 50 fs .. 2 ps trigger accuracy: bunch monitor (EO)

Detectors

large area detectors fast, and high DQE

Samples

heating, radiation damage (primary and secondary) a problem

Data Analysis

new data collection strategies, analysis and interpretation

The University of Chicago

BioCARS

Acknowledgements

Keith Moffat Group (University of Chicago)

Vukica Srajer, Tsu-yi Teng, Ben Perman Spencer Anderson, Harry Ihee, Sudarshan Rajagopal Zhong Ren, Marius Schmidt

BioCARS

Wilfried Schildkamp, Claude Pradervand, Gary Navrotski Shengyang Ruan, Keith Brister, Robert Henning

• CARS

Jim Viccaro, Mati Meron, Timothy Graber, Robert Henning, Peter Eng ... Technical Support Group

APS

ASD, AOD, AES, XFD, XSD

NIH-NIDDK

Philip Anfinrud, Friedrich Schotte

Reinhard Pahl

• Funding

NIH: NCRR, NIDDK

The University of Chicago

BioCARS

SPPS Collaboration

Sub-Picosecond Pulse Source

UC Berkeley	Roger W. Falcone Aaron Lindenberg Doppacha Lowney	DESY	Jochen Schneider
	Andrew MacPhee		Horst Schulte-Schrepping
APS Argonne Nat'l Lab		BioCARS	Keith Moffat
	Dennis Mills		Reinhard Pahl
	MSD Argonne National Lab		
	Brian Stephenson	ESRF	Francesco Sette
	Paul Fuoss		Olivier Hignette
	Juana Rudati		
		SLAC	Paul Emma
Univ. of Michigan	Philip H. Bucksbaum		Patrick Krejcik
	David Reis		Holger Schlarb
	Adrian Cavalieri		John Arthur
	Soo Lee		Sean Brennan
	David Fritz		Roman Tatchyn
	Matthew F. DeCamp		Jerome Hastings
			Kelly Gaffney
NSLS	D. Peter Siddons		
	Chi-Chang Kao	Copenhagen University	
			Jens Als-Nielsen
Uppsala University	Janos Hajdu		
	David van der Spoel	Lund University	Jörgen Larsson
	Richard W. Lee		Ola Synnergren
	Henry Chapman		Tue Hansen
	Carl Calleman		
	Magnus Bergh	Chalmers Universit	y of Technology
	Gosta Huldt		Richard Neutze

Reinhard Pahl

BioCARS

Into a brighter future -

on to exciting science -

Thank You !