Focusing X-ray beams below 50 nm using bent multilayers

O. Hignette Optics group

European Synchrotron Radiation Facility (FRANCE)

Outline

- Graded multilayers resolution limits
- 40 nanometers focusing
- Fabrication and metrology processes
- projection microscopy
- Perspectives

Multilayer comparison with metal coated mirrors

Metallic mirror width limit For Platinum FWHM = 21 nm

FWHM =
$$0.44 \frac{\lambda}{\text{NAmax}} \cong \frac{1.3\lambda}{\theta_c}$$

$$\lambda = 2 \Lambda \sin \theta$$

angle of incidence 5X larger than Pt for 20 Angstrom d-spacing

Small focal length with large acceptance possible

High energy applications

Pushing the limits : double reflections and annular type architectures

4 mirrors KB NA_{MAX} X 2 FWHM ≅ 2 nm

Ellipsoid NA $\cong 2\theta$ NA_{MAX} X 4 FWHM $\cong 1$ nm

Wolter II $NA_{MAX} \times 8$ FWHM $\cong 0.5$ nm

Limiting factors

Alignment ,vibrations, T drifts mirror figure errors and roughness Multilayer fabrication inaccuracies Volume effects (evanescent wave, phase shifts, scattering)

Diffraction limited figure tolerances

 Λ multilayer d-spacing

 λ Wavelength

 θ incidence angle

 σ_z = 0.22 nm rms for A=3 nm σ_z = 0.8 nm rms for Platinum

sub-angstrom roughness for multilayers

ID19 line nanofocusing multilayer experiment

Energy 24 Kev $\Delta E = 6\%$ focal length 80mm E incidence angle 5.5 mrd vertical 25 µm FWHM source at 150 m Mirror bender [W/B4C]₂₅

Line profile measurements

Raw data

focus plane scan (nanowire deconvolution)

Linesize versus acceptance

Mirror figure errors limitations?

line size vs acceptance

Wavefront phase error <u>From Xray in situ metrology</u>

Estimated error 25 nrd rms (Pencil beam method)

Vibrations measurements

Vibrations environment was not adequate for this test

New design to be tested $\cong 20 \text{ nm}$

Manufacturing – Metrology ESRF nanofocusing platform (6 KB systems - 40 nm)

Start from (nearly) available technologies. incremental improvements

Closed loop figuring – metrology process

Process steps

Substrate figuring – (bender attachment) optical metrology deterministic finishing multilayer sputtering, In situ Xray metrology multilayer phase correction

Fabrication processes used

Processes Computer control polishing Differential Width profiling Stressed polishing Differential- profile coating Ion beam figuring (IBF) Smooth initial figuring deterministic correction with limited spatial resolution

> Partners APS optics group Zeiss General optics Crystal scientific Winlight

Figuring processes

Lapping / Polishing Computer Controlled

Stressed polishing

Ion Beam Figuring Computer Controlled

37 X 77 mm focal length mirrors

Dynamic KB : starting from existing designs

ID19 low beta source at 150 m Energy 15 to 24 keV

ID22 60 m high beta section slitted source Energy 17 kev

ID 22 Spot size measurement

Shrinked design for dynamic KB

Improvements

Reduce focal length Mirror figure errors System vibrations Temperature induced drifts - feedback

Available metrology instrumentation for strong aspheres

Need : 0.1 nm rms accuracy

LTP accuracy being evaluated (Round Robin)

New commercial stitching interferometers ADE phase shift, QED Evaluated by L. Assoufid at APS

ESRF In situ Xray metrology (many other wavefront methods coming along)

ESRF pencil beam In situ metrology (wavefront derivative)

80 mm FL multilayer (41 nm FWHM)
20 nanoradian rms slope precision
figure error repeatabilty over 36 mm : 0.15 nm PV (0.03 nm rms)

Medium- long term perspectives

Static multilayers mirrors preferred

Substrate figuring : Zeiss, OSAKA U (JTEC) , TINSLEY capability already at the nanometer level - Roughness to be confirmed

Multilayers : Very steep gradients and phase correction feasability to be proven

Metrology : Xray wavefront methods necessary and probably sufficient much beamtime needed.

In situ figuring an attractive option

Pooling of synchrotron sources resources ?

Synchrotrons Challenge

Establish a predictable secure procurement for all process operations keep control especially for metrology

Market is small with respect to needed investments

European FP7 initiative

Europe -US collaborations

Rely on what will be commercially available (OSAKA-JTEC)

Application : projection microscopy Fresnel diffraction pattern - Spot size limited resolution Magnification: $(z_1 + z_2)/z_1 = 3$ Energy = 19 keV KB **Defocus:** $z_1 z_1/(z_1 + z_2) = 22 \text{ mm}$ M = 9 Z_1 D = 29 mmobject Z_2 M = 18

P. Cloetens, O. Hignette

2D detector

2 µm resolution

CHESS ERL workshop

D = 31 mm

Defect of grating on a 100 nm scale revealed

Application example : Magnified Tomography on ID19 (projection imaging) Al / Si alloy_____

tomographic slice

75 um

Inside $\phi = 1 \text{ mm sample} \rightarrow \text{local tomography!}$ E = 20.5 keVX-ray magnification ~ 80 (voxel size = 90 nm) R Mokso et al, submitted to Appl. Phys. Lett

Si

Pore

Conclusions

Reflective optics technology is now a serious candidate for < 10 nm nanofocusing

Most needed technologies have been proven at a research level

1 nm goal needs huge (coordinated) efforts but not a total dream

How and where to put resources to establish

Full processes control

Acknowledgements

C.Morawe, P.Cloetens, R.Baker, A.Seifert, L Assoufid, R.Conley

SRI

Technologies developped at ESRF Short term KB nanofocusing projects

system type	coating	focal length HXV(mm)	energy range kev	spot size (nanometers)
dynamic	multilayer	83 X 180	13 - 25	50 X 50
dynamic	multilayer	160 X 360	10 - 14	300 X 200
dynamic	multilayer	240 X 100	50 - 100	300 X 40
dynamic	Pt	80 X 177	10 - 14	200 X 200
static	Ni	60 X 150	2.5 - 7.5	200 X 100
static	Pt	37 X 77	10-14	50 X 50