KB Mirrors and Nanobeam Materials Science

Gene Ice

Oak Ridge National Laboratory

New Science Opportunities with Nanometer-Sized ERL X-ray Beams

Team of ORNL/APS scientists

• ORNL

- Bennett Larson- Co-principle DAXM/3D
- John Budai-Epitaxial films and 3D grain growth
- Jonathan Tischler- nanobeams and controls
- Wenge Yang-Mesoscale deformation using nanoindentation/software
- Eliot Specht -automated orientation software
- Wenjun Liu-Grain boundary networks
- Judy Pang-in-situ 3D polycrystalline deformation

• APS

- C. Liu- profile coating
- A. Macrander- advanced techniques/modeling
- A. Khounsary advanced focusing optics
- L. Assoufid- metrology
- Canadian/Australian collaborators
 - S. McIntyre
 - A. Gerson
 - R. Feng

Small beams change everything!

- Mapping!
 - Chemistry
 - Local structure
 - Heterogeneity
 - Defects/ correlations
- Combinatorial/ ease of sample preparation
- ESRF/APS fielding ever more microbeam capability
- International race to make small hard x-ray beams

Polychromatic/ achromatic *small* beams are particularly important

At the nanoscale -*really* important!

Goal of nanobeams is <u>new</u> science

- Big beams can study small samples
- Electrons can penetrate nanometers into samples!
- Electrons only penetrate so far-
- Signal-to-noise poor

3 motivations for 1-nm probe

- Improve signal-to-background for individual nanoparticle
 - Isolate from matrix/ surrounding particles
- Resolve nano regions
- Look at small volumes below surface along boundaries etc./ correlations

Probably essential for science!

Spirit of Laue Diffraction embedded in thinking about advanced nanoprobe

 Polychromatic beam solves intrinsic diffraction problem; no sample rotations!

Proposed ERL provides 2 huge advantages for KB mirrors

- Small source size simplifies x-ray optics
 - Coherent beams
 - Improved geometrical demagnification
- High brilliance
 - Figure of merit for nanodiffraction & nanospectroscopy
 - Reasonable count rate for small beams!

New science opportunities with micron-sized source

- Extend Polychromatic Diffraction
 - 20nm probe will extend current science
 - μ s Laue images \rightarrow 3D images with TV resolution in few minutes

Nondispersive scanned probe

- Structure identification of tiny volumes inside materials
- Grain-boundary measurements
- Defect structure
- Single atom spectroscopy?
 - Chemistry, bonding of single or few atoms

3-D X-ray Crystal Microscope has 5 key Elements

Polychromatic microdiffraction characterizes 3D materials distributions

Science of 1st generation 34-ID-E compelling

Lattice

- Grain growth
 - Thin films/ Surfaces
 - 3D
 - Anomalous
 - CSL

Deformation/strain

- Single crystal
- Polycrystal
- Near surfaces

Cracks

– Mesoscale field

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Anneal 250°C, 1 hr

Anneal 350°C, 1 hr

Anneal 355°C, 1 hr

Anneal 360°C, 1 hr

Faster 3D imaging & better spatial resolution will revolutionize science

- Volume measurements with essential resolution
 -plasticity length scale
- In-situ dynamics
- User driven exploration

Higher brilliance and Rapid readout needed for 3D imaging

- ALS/APS developing 100 hz
 16 bit CCD
- ~1000x faster than current CCD
- 80x 80 x 80=5.1x10⁵=10⁴ sec=2.7 hrs
- ERL has potential for μs measurements! 1000 x1000 x1000 in seconds!

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

80 x 80 surface image

Energy scan provides single-crystal sensitivity without sample rotations

Unknown phase identification

- Generalization of orientation software can identify phases
- Energy scans provide integrated reflectivities.
- Identified two minor crystal phases tetragonal/hexagonal

Cannot be found by powder

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

BAM braze Pd₄₀Cu₃₀Ni₁₀P₂₀

Structure refinement underway

Similar to High pressure advantages of polychromatic methods

- Small sample volumes
- Difficult to rotate sample chamber

 Pressure gradients/polycrystals complicate interpretation

Small irradiated volumes simplify handling/preparation

- Activity ~volume (10⁻⁵)
- Much less waste (10⁻⁷)
- Polycrystalline samples easier obtain- closer to real materials

Microsample ~10⁻³ mm³ 100-1000 samples

Energy scans measure diffuse scattering from small volumes

- Small volumes simplify sample prep
- Combinatorial

Relate defects to
 mesoscale features

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY -0.2 -0.1 0 0.1 0.2

Femptoxanes

- Ultrafast spectroscopic mapping
 - Real areas!
- Single pulse timing
 - Dynamics of photo-induced reactions

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

µ(cm¹)/k(watts cm K)

Single atom spectroscopy

- Signal sufficient to detect single atom
- Background must be controlled with crystal optics

Better optics essential to exploit ERL properties

More perfect mirrors

Much faster area detectors

 Phosphors/ parallel readout/pipelined analysis

New technical approaches/software
 – Spatial deconvolution

APS (C. Liu) pioneering precision profile coating

- Flexible path to x-ray quality aspherical optics
- Corrects fabrication imperfections
- Physically/thermally stable

New approaches needed for nondispersive <25 nm beams

- Nested (20 nm)
- Multilayers (6-8 nm)
- Wolter (6-8 nm)

• Deflected beam (4-8 nm) $-4\theta_c$ $-8\theta_c$ Oak Ridge National Laboratory U. S. DEPARTMENT OF ENERGY

Summary: ERL + advanced KB optics offers new science opportunities

- Single atom spectroscopy
- Single pulse fs XANES
- Unknown phase identification from nanomaterials
- Grain boundary structure
- 3D mapping
- Diffuse scattering from ultra-small volumes

