Elec

Imaging at the Nanoscale -Electron and X-Ray Beams

David Muller

Judy Cha, Peter Ercius, Lena Fitting, Jerome Hyun, Aycan Yurtsever,

Applied and Engineering Physics, Cornell University

Nanoparticles

New Materials

Integrated Circuits

Similar challenges (and tools) for semiconductor and life sciences

T2 Bacteriophage

2007

Single atom P. Voyles, D. Muller, J. Grazul, P. Citrin, H. Gossmann, *Nature* 416 826 (2002)
Sensitivity: U. Kaiser, D. Muller, J. Grazul, M. Kawasaki, *Nature Materials*, 1 102 (2002)

Why is the Probe so Large?

- Probe diameter is ~ 2 Å
- Electron Wavelength at 200 kV is 0.0251 Å
- Non-ideal lenses in large aberrations in tiny numerical apertures

Corrector Benefits: Increased current, resolution, contrast [see P. E. Batson *et al.*, *Nature* **418**, 617 (2002)]

contrast or current.

Aberration-Corrected STEM

NION SuperSTEM with PEELS

- 0.4 eV energy resolution
- 0.05 nm spatial resolution
- 1 nm depth of focus -> 3D!
- EELS spectral maps in real time

This will be the world's first 5th-order corrected STEM (x 4 improvement over previous)

Single atom P. Voyles, D. Muller, J. Grazul, P. Citrin, H. Gossmann, *Nature* 416 826 (2002)
Sensitivity: U. Kaiser, D. Muller, J. Grazul, M. Kawasaki, *Nature Materials*, 1 102 (2002)

3D-Characterization of Si Nanoparticles embedded in Silicon Oxide

Tomographic reconstruction of the Silicon plasmon signal at 17eV

Silicon Nano-particles Embedded in Silicon Oxide

Tomographic reconstruction of the Silicon plasmon signal at 17eV

D. A. Muller et al., Nature **399**, 758 (1999).

Theory in

J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rev. Lett. 85, 1298 (2000).

How Bad is Radiation Damage?

R. Henderson, Quarterly Reviews of Biophysics 28 (1995) 171-193.

It's not the cross-section, but

How many damaging events per useful imaging event?

Least Damage: Elastic imaging - Electrons wins Inelastic imaging - Soft X-rays win

Data from Breedlove and Trammell, Science 170 (1970) 1310-1313

For electrons $\sigma_i / \sigma_e \sim ln (E)$

What Causes the Damage?

(Temperature rise is < 2K- smaller beam is less)

coronene (Stevens, 2000)

- -× · PE (Boudet and Roucau, 1985)
- behenic acid (Ohno, 2000)
- DCHD (Liao and Martin, 1993)
- PE (Kumar and Adams, 1990)
- -E-DCHD (Read and Young, 1985)
 - PE LVEM (Martin and Drummy, 2001) +
- Pentacene (Drummy, 2002)
- p-terphenyl (Howie, 1985)

Calculated C-K shell ionization **Cross-section**

Suggests Auger Transitions could be suspect, Rather than the 20 eV valence losses

LF Drummy et al. Ultramicroscopy 99 247-256

Electron Beam (400 keV) Radiation Damage in Vitreous Ice

(Damage Threshold ~ 500 e⁻/nm²)

It's almost impossible to do atomic-resolution phase contrast imaging with biological samples (except by averaging over many similar molecules)!

B. F. McEwen et al, Journal of Structural Biology **138** 47–57 (2002) Saxberg & Saxton, W.O., Ultramicroscopy **6**, 85–90 (1981)

Small features have low contrast (and for a fixed dose we trade 2D resolution for contrast)

Resolution α Sample Thickness

Need to make thin samples (true for x-rays as well as electrons)

(unless we have a fluorescence detection method)

Focused Ion Beam Milling

Cut out a shape with a 5-30 keV Ga+ ion beam

Pick up of TEM lemella with Lift-out Tool

Sample can be As thin as 100 nm (but damage layer Is 10-30 nm/side)

Hitachi Review Vol. 54 (2005), No. 1 29

Fig. 4—Observation Examples of DRAM Capacitor Plug (2-µm square).

Water Droplets in Liquid Margarine

Tomography at the Nanoscale

Walter Hoppe, Angew. Chem. Int. Ed. Engl. 22 (1983) 456-485

3D resolution function

along X, $dx \sim 0.2$ nm along Y, dy ~ 1 nm along Z, $dz \sim 1$ nm (due to limited tilt range and finite number of projection images)

Sample thickness: 20-600 nm

High tilt tomography holder (Fischione 2020)

No tilt (0°)

-80°

Low magnification (57x) CCD image

Limit of goniometer α tilt

Finite Sampling

• Matthew Weyland

Determining the tilt axis

Single Image

Projection through aligned series

Power spectrum of (b)

Matthew Weyland

Stress Void Reconstruction

Via is 250 nm thick, inside a 500 nm thick Cu section

P. Ercius, M. Weyland, D. A. Muller, L. M. Gignac, Appl. Phys. Lett. 88 243116 (2006).

Environmental Sensitivity

We don't just see atoms:

•Can detect moving chairs, elevators, trucks and air pressure changes.

•"Drift to the right, rain tonight"

Radiant Cooling Panels: Heat Transfer without Airflow

(allows us to cut back airflow – which is now used to control humidity)

- •Radiant cooling panel temperature regulated by closed-loop chiller
- •Brings room into thermal equilibrium with panels by radiative transfer
- •By tuning the panel temperature, we can keep the building heat from pulsing
- •Effect is to add a huge thermal mass to the room (a giant wine cellar)

Outlook

• Electron Microscopy: 0.5-0.7 Å resolution (1-2 Å standard today) 0.1-0.5 eV energy resolution Sample thickness < 100-1000 nm Small working distance (~3-10 mm) Nitride-window e-cells for imaging liquids

• X-Ray Microscopy:

Radiation damage will be worse for elastic imaging (1/r⁴ in 3D)
Best resolution will require TEM-like sample preparation

+10 nm res & 1- 10 μm thick samples for whole-cell mapping

Acknowledgements

Peter Ercius

L->R: Aycan Yurtsever, Matt Weyland, Jerome Hyun, David Muller, Lena Fitting, Earl Kirkland, John Grazul, Judy Cha

Funding: National Science Foundation, Office of Naval Research, Semiconductor Research Corporation

Acknowledgements

Cu/CoWP (Cornell)

• Peter Ercius, Tom Shaw, Mike Lane, Lynne Gygnac, IBM

Grain Boundaries in Ni₃AI (Cornell)

 David Singh (*NRL*), Phil Batson (*IBM*), Shanthi Subramanian, Steve Sass, John Silcox

Imaging Individual Dopant Atoms (Bell Labs)

• Paul Voyles, John Grazul, Hans Gossmann, Paul Citrin, Ute Kaiser (*Jena*)

SiO₂ and High-k Gate Oxides (Bell Labs)

• Frieder Baumann, Greg Timp, Ken Evans-Ludderodt, Tom Sorsch, Glen Wilk, Yves Chabal, Jack Hergenrother, Jeff Neaton (*Cornell*)

Electron Backscatter Imaging

EBSD, EMPA, John Hunt hunt@ccmr.cornell.edu

Use electron channeling patterns to Produce maps of grain orientations

Needs clean surfaces, grains > 200 nm

(With a FEG-SEM, as small as 20-50 nm)