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Why is  the Probe so Large?Why is  the Probe so Large?
• Probe diameter is  ~ 2 Å
• Electron Wavelength at 200 kV is  0.0251 Å
• Non-ideal lenses     large aberrations      tiny numerical apertures

2 Å

Cs=1mm Cs corrected

Corrector Benefits:  Increased current, resolution, contrast
[see  P. E. Batson et al., Nature 418, 617 (2002)]
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Aberration-Corrected STEM

NION SuperSTEM with PEELS
• 0.4 eV energy resolution
• 0.05 nm spatial resolution
• 1 nm depth of focus -> 3D!
• EELS spectral maps in real time

This will be the world’s first
5th-order corrected STEM

(x 4 improvement over previous)

Due early ‘06
late
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10 nm

Tomographic reconstruction of the Silicon plasmon signal at 17eV

3D-Characterization of Si Nanoparticles embedded in Silicon Oxide



Silicon Nano-particles Embedded in Silicon Oxide

Tomographic reconstruction of the Silicon plasmon signal at 17eV
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Implications for Scaling SiOImplications for Scaling SiO22

The Interface width is fixedThe Interface width is fixed
There will be no more BulkThere will be no more Bulk--like bonding when the like bonding when the 
Oxide is less than 0.7 nm.Oxide is less than 0.7 nm.
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Does Clockspeed Matter?
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From 1970-2005, bits/second increased by x 3,000,000

Clockspeed increased  x 40,0000
Bus Width increased x 8
“Smarter Design”  - only x 5

D. A. Muller, Nature Materials, 4 p 645 (2005)



How Bad is Radiation Damage?
R. Henderson, Quarterly Reviews of Biophysics 28 (1995) 171-193.

It’s not the cross-section, but

How many damaging events per 
useful imaging event?

Least Damage:
Elastic imaging - Electrons wins
Inelastic imaging - Soft X-rays win
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Radiation Damage as a Fundamental limit

For electrons σi / σe ~ln (E)



What Causes the Damage?

LF Drummy et al. Ultramicroscopy 99 247-256

Calculated
C-K shell ionization
Cross-section

Suggests
Auger Transitions
could be suspect,
Rather than the
20 eV valence losses

(Temperature rise is < 2K- smaller beam is less)



Electron Beam (400 keV) Radiation Damage in Vitreous Ice

Hydrogen 
Bubbles
form in densest
sections

100 nm

50 e-/nm2 200 e-/nm2

10,000 e-/nm2 14,000 e-/nm2

(Damage Threshold ~ 500 e-/nm2)



Dose Required for 2D-Imaging
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Dose Required for 3-D Reconstructions
is worse!

B. F. McEwen et al, Journal of Structural Biology 138 47–57 (2002) 
Saxberg & Saxton, W.O., Ultramicroscopy 6, 85–90 (1981)

Dose α 1/(Resolution)4

P α 1/(Contrast)2

Dose
Contrast

Resolution



High Resolution= Thin Sections

Small features have low contrast  (and for a fixed dose we trade 2D resolution for contrast)

Resolution α Sample Thickness

(unless we have a fluorescence detection method)

Need to make thin samples (true for x-rays as well as electrons)



Focused Ion Beam Milling

Water Droplets in Liquid Margarine

Cut out a shape with a 5-30 keV Ga+ ion beam

Sample can be
As thin as 100 nm
(but damage layer
Is 10-30 nm/side)



Tomography at the Nanoscale

Walter Hoppe, Angew. Chem. Int. Ed. Engl. 22 (1983) 456-485

3D resolution function 
along X, dx ~ 0.2 nm 
along Y, dy ~  1 nm 
along Z, dz ~  1 nm 
(due to limited tilt range and finite number of projection images)

Sample thickness:  20-600 nm 



High tilt tomography holder (Fischione 2020)

No tilt (0º)

Low magnification (57x)
CCD image

-80º

Limit of goniometer α tilt

+80º

Limit of goniometer α tilt
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Stress Void Reconstruction

Via is 250 nm thick, inside a 500 nm thick Cu section

P. Ercius, M. Weyland, D. A. Muller, L. M. Gignac,  Appl. Phys. Lett. 88 243116 (2006).  



(100 nm wires inside an IBM chip)

Double liner

Roughness

3D Imaging Inside Interconnects
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How Metal Contacts Form on a Carbon Nanotube
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A Remote Truck-Detector
Non-magnetic
Chair

Environmental Sensitivity

•Can detect moving chairs, elevators, 
trucks and air pressure changes.

•“Drift to the right, rain tonight”

We don’t just see atoms:

Acoustic
banner

Radiant
cooling
panel



Cooling and Airflow

“DuctSox”
porous mesh
for uniform,
low airflow

Radiant
cooling
panel

Acoustic
damping
material



•Radiant cooling panel temperature regulated by closed-loop chiller

•Brings room into thermal equilibrium with panels by radiative transfer

•By tuning the panel temperature, we can keep the building heat from pulsing

•Effect is to add a huge thermal mass to the room (a giant wine cellar)

Radiant Cooling Panels: Heat Transfer without Airflow

60

65

70

0 10 20 30 40

Te
m

p 
(F

)

Time (hours)

Panels on

Panels off

(allows us to cut back airflow – which is now used to control humidity)

Stable panel 
operating point



Outlook

• Electron Microscopy:   0.5-0.7 Å resolution  (1-2 Å standard today)
0.1-0.5 eV energy resolution
Sample thickness < 100-1000 nm
Small working distance (~3-10 mm)
Nitride-window e-cells for imaging liquids

• X-Ray Microscopy:
•Radiation damage will be worse for elastic imaging  (1/r4 in 3D)
•Best resolution will require TEM-like sample preparation
•10 nm res & 1- 10 µm thick samples for whole-cell
mapping

silicon polysiliconSiO2

1 nm 
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Electron Backscatter Imaging

EBSD, EMPA,
John Hunt 

hunt@ccmr.cornell.edu

Use electron channeling patterns to
Produce maps of grain orientations

Needs clean surfaces, grains > 200 nm

(With a FEG-SEM, as small as 20-50 nm)


