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Refractive X-Ray Optics

• first realized in 1996 (Snigirev et al.) 

• a variety of refractive lenses have been developed since

• applied in full field imaging and scanning microscopy

• most important to achieve optimal performance:

aspherical lens shape

parabolic
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Effective Aperture Effective Aperture andand Diffraction Diffraction LimitLimit

DDeffeff

Deff limited by:

• geometric aperture 2R0
• attenuation inside lens material

(includes Compton scattering)

Numerical aperture:

NA = sinα = Deff

2L2

Diffraction limit:

dt = 0.75 ⋅ λ
2NAlow Z lens material

L2
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Numerical Aperture

large f: aperture dominated by attenuation

Deff = 4 fδ
μ
∝ f

: reduce focal size to minimum
reduce µ/δ (low Z lens material)

100 μm

NA = Deff 2 f ∝1 f
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Nanofocusing Lenses Nanofocusing Lenses (NFL)(NFL)

lens made of Si by e-beam litho-
graphy and deep reactive ion etching!

strong lens
curvature:

N = 35 - 140

APL 82, 1485 (2003)

nanolens

500 μm

single
lens

100 μm

optical axis
R = 1µm - 5µm
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Crossed Nanofocusing LensesCrossed Nanofocusing Lenses

vertically focusing lensvertically focusing lens
aperture defining pinholeaperture defining pinhole

horizontally focusing lenshorizontally focusing lens
samplesample10mm

Setup at ID13
(ESRF)
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Focusing with NFLsFocusing with NFLs

Si lens: E = 21keV, L1 = 47m

vertical focus: 55nm

demagnification: 
~ 2400 x 4400

horizontal focus: 47nm

source: 
ID13 low-β invac. undulator

source size: 150 x 60µm2

flux: 1.7 ·108ph/s 

f = 10.7mm

f = 19.4mm

APL 87, 124103 (2005)

DOF = 42 x 86 µm2
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Focusing with NFLsFocusing with NFLs

Si lens: E = 21keV, L1 = 47m

vertical focus: 55nm

horizontal focus: 47nm

source: 
ID13 low-β invac. undulator

source size: 150 x 60µm2

f = 10.7mm

f = 19.4mm

APL 87, 124103 (2005)

roughness: ~ 10nm rms
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Effective Aperture Effective Aperture andand Diffraction Diffraction LimitLimit

Nanofocusing lens:

lens short (attenuation negligible):

fmin = f0L = Rl
2δ

with f0 =
R

2Nδl

L

Deff < 2R0 ≈ 2 Rl
2R0

NA = Deff

2 fmin

≤ 2 Rl
2 Rl

2δ

= 2δ
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Numerical Aperture of NFLs

NA = Deff

2 fmin

≤ 2δ

Always smaller than critical angle of total reflection

Limits diffraction limit of NFLs to

dt ≥ 0.75 ⋅ λ
2 2δ

>10nm

for useful lens materials
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Effective Aperture Effective Aperture andand Diffraction Diffraction LimitLimit

Diffraction Diffraction limit:limit:
NN = 100= 100
ll ≥≥ 0.0840.084
RR = 0.5 = 0.5 -- 5050µµmm

Best materials: highBest materials: high density density andand low low ZZ

0.75 λ
2 2δ

∝ const.

bounded by 

APL 82, 1485 (2003)
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Refractive Power per Unit Length

2R0

ω2 = 1
lfs

= 2δ
lR

≈ 2δ
R0

2

For large number of lenses:

r' '= d2r
dz2 = −ω

2r

Beam oscillates inside of lens
(analogy to harm. oscillator)
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Refractive Power per Unit Length

2R0

ω2 = 1
lfs

= 2δ
lR

≈ 2δ
R0

2

• increases with decreasing R0

• beam converges to focus inside of lens

aperture can be decreased
without loss toward exit of lens

increase ω2 toward exit of lens
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Adiabatically Focusing LensAdiabatically Focusing Lens

adjust R0 to fit the 
converging beam 
as it is focused:

adiabatically focusing lens (AFL)

PRL 94, 054802 (2005)

ω2 = 2δ
l jRj

≈ 2δ
R0 j

2

Solve

r' '= −ω(z)r

for peripheral ray R0(z)
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Adiabatically Focusing LensAdiabatically Focusing Lens

adiabatically focusing lens (AFL)

PRL 94, 054802 (2005)

R0 ' '= −2δ
R0

First integral:

1
2

(R0 ' )2 + 2δ log(R0 ) = E

E defined by initial conditions
For example:

R0 '= 0, R0 = R0i
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Adiabatically Focusing LensAdiabatically Focusing Lens

adiabatically focusing lens (AFL)

PRL 94, 054802 (2005)

R0 '= 4δ log R0i

R0

First order differential eq.:

Solution shown to the right

f = R0i

4δ log R0 i
R0 f

Deff = 2R0i
2
μL

1− exp −
μL
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
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Adiabatically Focusing LensAdiabatically Focusing Lens

PRL 94, 054802 (2005)

Numerical aperture:

a = 2 δ
πμ

, with

δ large: high density ρ
a large: low absorption (low Z)

R0i set to maximize NA (0.6 - 1·a)
R0f set to minimal value

(char. aperture)

optimal material: diamond (high density, low Z)

material parameters

fabrication parameters

NA = δ 4 a
R0i

1− exp −
R0i

a
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
log R0i

R0 f
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Example Example AFLAFL

Diamond lens:

low atomic number Z and high density ρ

N = 1166 individual lenses
entrance aperture: 18.9µm
exit aperture: 100nm
f = 2.3mm

diffraction limit: 4.7nm

compare to NFL:

same aperture

diffraction limit: 14.2nm

contracting wave field inside lens
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Example Example AFLAFL

Diamond lens:

low atomic number Z and high density ρ

N = 1166 individual lenses
entrance aperture: 18.9µm
exit aperture: 100nm
f = 2.3mm

diffraction limit: 4.7nm

Flux in focus (@20 keV, same focus size):

contracting wave field inside lens

ESRF, Invac. undulator: ~ 109 ph/s

ERL hi-coh (15pm, 10mA): ~ 1011 ph/s
ERL hi-coh (8pm, 25mA): ~ 1012 ph/s

DOF = 1.1µm

107 - 108 ph/Å2/s!!
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Example Example AFLAFL

kinoform lens: segment size follows converging beam

No atomic resolution in direct imaging with refractive lenses!

but

No sharp fundamental limit! Practical implementation difficult!

PRL 94, 054802 (2005)
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Refractive Lenses: Summary

• limited density of low Z materials limits δ

• characteristic aperture a limits initial aperture R0i

(as result of attenuation)

• fabrication and atomic structure limits exit aperture R0f

Numerical aperture limited:
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Wave Propagation Through FZP

E = 20 keV, rM(0) = 0.8µm

ΔrM = 1nm

Ni/vac. zone plate

2ik ∂u
∂z

+
∂2u
∂x2 +

∂2u
∂y2 + k2 n2 (x, y, z)−1( )u = 0

parabolic wave equation:

n(x, y, z) = 1−δ (x, y, z)+ iβ(x, y, z) complex potential!

(inspired by poster by
F. Pfeiffer at XRM2005)
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Wave Field Inside FZP

incoming plane wave

propagate exit wave field
to focus

ideal tilted FZP
[Kang, et al., PRL 96 127401 (2006)]
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FZP Focus

Jx (x, z) = 1
2ik

ψ ∂xψ − ∂xψ ψ⎡⎣ ⎤⎦

transverse flux density:

tilted FZP

thin FZP
untilted FZP

PRB, 74 (July 15, 2006)

Limit: atomicity of matter!
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FZP: Summary

PRB, 74 (July 15, 2006)

no limit as long as matter is homogeneous

multilayers have been shown to behave homogeneously
down to below 2 nm d-spacing (1 nm layers)

atomicity will limit zone
placement!

high efficiency, since only
one diffraction order is 
excited!

other optics may be
calculated similarly!
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Wave Front inWave Front in Diffraction Limited Diffraction Limited FocusFocus

Gaussian limited plane wave

dt =
2 2 ln2

π
λ

2NA
≈ 0.75 λ

2NA

• coherent diffraction

• XPCS, XFCS

divergence angle:
numerical aperture

NA

XFCS, J. Wang, et al.,
PRL 80, 1110 (1998)
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Wave Front inWave Front in Diffraction Limited Diffraction Limited FocusFocus

Lateral coherence length in nanofocused beam:

lt = dt 1+ 2dt
2

b2

dt: diffraction limit
b: geometric image of 

source

Coherent diffraction at nanoparticles possible,
as long as particles are smaller than diffraction limit.
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Coherence Coherence inin the the FocusFocus

divergence (NA): 

FWHM focus size:

lateral coherence length:

Si NFL @ ID13, E = 15keV

120 x 300 nm2

66 x 75 nm2

nominal parameters:

diff. limit:

54 x 71 nm2

Diffraction from Fe-particles 
(~ 40nm diam., on Si3N4 membrane,
from R. Röhlsberger)

Visibility reduced:
mechanical instability!

(exposure: 10 s)

Preliminary experiment:

0.58 x 0.43 mrad2 horiz. beam size: 120nm
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Scanning Coherent Diffraction MicroscopyScanning Coherent Diffraction Microscopy

bridge the „small“ gap to atomic resolution by using 
coherent diffraction imaging contrast

„arbitrary“ samples:
support defined 
by illumination
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Scanning Coherent Diffraction MicroscopyScanning Coherent Diffraction Microscopy

bridge the „small“ gap to atomic resolution by using 
coherent diffraction imaging contrast

reduced requirements
on dynamic range of 
detector

smaller q-range (WAXS)

short local exposure
(up to 107ph/Å2)

∝ q−3...−4

larger detector pixels
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Conclusion

Refractive optics:

• hard x-ray beams of 5nm seem feasible

• kinoform lenses would reduce focus size (feasibility?)

(limiting factor is attenuation and atomicity of matter)

Fresnel zone plates (tilted):

• focus below 1 nm should be feasible
(limiting factor is atomicity of matter)

Challenging experiment:

• scanning coherent diffraction microscopy
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AFLs Made of Silicon

entrance aperture: 2R0i = 20µm
exit aperture: 2R0f = 1µm
energy: 10 - 20keV in 500eV steps

f = 2.7mm
dt = 12.6nm

as horizontal lens in x-ray 
nanoprobe (e. g. ID13 ESRF):

L1 = 47m, source size: 150µm

horizontal focus: 15.3nm 
(17400 x reduction)

properties: 
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FarFar Field Field of Focus:of Focus: AberrationsAberrations

Si NFL @ ID13, E = 15keV

Far field image of focus:
Structure:

irregularities in lens
shape

reconstruction of lens shape?
[Quiney, et al., Nat. Phys. 2, 101 (2006)]

detector dist.: 800mm
log (I)

500µm
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Optimal Numerical Aperture of Single Lens

First scenario: 

Works as long as ray is not 
totally reflected

Deflection angle < 2δ

NA limited by 2δ
even for non-absorbing
material
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Optimal Numerical Aperture of Single Lens

Second scenario: 

Strongest deflection:

deflection angle < 2δ

NA limited by 2δ

ray from inside the material
in grazing incidence

make more than one refraction to increase NA

2δ


