

Pahtways for X-ray Nanometer Focusing What are the Scientific Opportunities

Anatoly SNIGIREV

CHESS WS , 23-24 June, 2006

ERL :

<i>"high coherence" mode</i> current I = 10 mA	Beam energy	E = 5.3 GeV	
betafunction emittance $\beta = 1 \text{ m}$ (2.5 m; 12.5 m) $\epsilon = 0.015 \text{ nm rad}$	nigh coherence" mode current betafunction emittance	I = 10 mA $\beta = 1 \text{ m}$ $\epsilon = 0.015 \text{ nm rad}$	(2.5 m; 12.5 m)

Source size:	(FWHM)	
σ = 4 μm	S = 10 μm	(esrf 25 x 900 μm²)
Beam divergence	(FWHM)	
σ' = 4 μrad	S' = 10 μrad	(esrf 20 x 30 μrad ²)

Av. brilliance: 3 x 10²² ph / (s 0.1% mm² mrad²)

Undulator X-ray beam (ESRF/ERL)

 $\varnothing \sim 0.5 \text{ mm}$ at 50 m

Why do we need a coherent beam for Microoptics?

Transverse coherence ~ Aperture of the optics

- Diffraction limited focusing at nm level
- Coherent secondary source coherence inhancement

Aperture (acceptance) of nanooptics is about 50 -500 μ m resolution ~ 10 - 100 nm

for ERL : beamsize 500 μ m dia at 50 m

Focusing Optics for Hard X-rays: 6 - 60 (200) keV

	reflective				diffractive	refractive
	Kirkpatrick syster	k Baez ns	Capillaries	Waveguides	Fresnel Zone plates	Refractive lenses
	mirrors Kirkpatrick Baez, 1948	multilayers Underwood Barbee, 1986	Kreger 1948	Feng et al 1993	Baez 1952	Snigirev et al, 1996
Energy	< 30 keV	< 80keV	< 20keV	< 20keV	< 30 keV (80)	<1 MeV
Bandwidth DE/E	w. b.	10 ⁻²	w.b.	10 ⁻³	10 ⁻³	10 ⁻³
resolution	25 nm Spring 8 2006	40 nm Hignette 2005	50 nm Bilderback 1994	40x25 nm² Salditt 2004	20 nm @ 20keV APS, 2006 ∼15nm<1keV	50 nm Schroer 2004

Fresnel Zone Plate (FZP)

FZP Si chip

Lens parameters

 $A=2r_n = F\lambda / dr_n$

DOE type	Focal length, F (cm) at 8 keV	Aperture of DOE, $A \ (\mu m)$	Outermost zone width, dr_n (µm)	Number of zones
33 (circular)	50	A=194	0.4	122
11 (linear)	100	A=387; L=1000	0.4	242
12 (circular)	100	A=387	0.4	242
21 (circular)	150	A=582	0.4	364
31 (linear)	150	A=582; L=1000	0.4	364
13 (linear)	200	A=775; L=1000	0.4	484
23 (circular)	200	A=775	0.4	484
22 (linear)	240	A=930; L=1000	0.4	582
32 (circular)	240	A=930	0.4	582

Stacking FZP

Fine alignment with 50 nm step

 $\Delta r_n/3$

Tilt compensation for linear displacement

E = 24 keV eff ~ 30% 2FZP at 50 keV eff ~ 35% tested at ID15 F = 3 m

50 keV X-ray focusing with two-stacked FZPs

Vertical scan

2xFZP DOE7/33E = 50 keV L₁ = 60m L₂ = 3.2 m A = 200 µm

Gain=450

Spatial resolution limit

Transmission zone plate

Reflection zone plate

8

 $> \sqrt{m\lambda t_{opt}}$ Sr_

Microfabrication techniques for planar CRLs

Single parabolic refractive lens

CRL with parabolically shaped holes

CRL with parabolically shaped half-holes

A. Snigirev, V. Kohn, I. Snigireva, A. Souvorov, B. Lengeler, *Applied Optics, vol. 37, 653, 1998.*

R must be small R < 0.5 mm
μ/ρ ~ Z³/E³ must be small low Z material: Li , Be , B , C , SU-8 , Al, Si
gain ~ δ/β

	E, keV	δ	β	δ/β
Si	10	4.9E-6	7.4E-8	70
	20	1.2E-6	4.6E-9	250
Diamond	10	7.3E-6	6.9E-9	1000
	20	1.8E-6	3.6E-10	5000

Advantages of micro-fabrication technology

- Any combination of refraction and diffraction properties
- Computer-aided design (from incident wavefront correction to pre determined exit wavefront generation)
- No diffraction-limited aperture
- Use of low-Z materials that are hard for machining (Si, B, diamond)

Advantages of Linear focusing

Astigmatic focusing

vertical source size is smaller then horizontal one.

- Combination with other BL focusing elements as crystals, mirrors.
- Needs for high resolution diffraction and scattering techniques including surface analysis, high resolution diffraction experiments, standing waves technique

aperture100 μmhight100 μmweb size5 μm

lens R _{parabola} tip 3.2 μm; 6.4 μm; 2 -3 - 12.8 μm; 4 - 19.1 μm; 5 - 25.4 μm E = 14 keVF = 75 cmSource size 30 µm Source-to-lens distance 60 m $FWHM = 1.5 \ \mu m$

Si lenses with $0.3 - 0.4 \mu m$ profile deviation

Focus depth energy scan for 5 lenses

Test of Si lenses with $0.3 - 0.4 \mu m$ profile deviation

at SPRing-8

 $E = 17 \text{ keV} \qquad F = 100 \text{ cm}$ Source size 15 µm Source-to-lens distance 1 km !!! FWHM = 0.9 µm

 And has been an element of the second se	desincelistics in the system when		ARTICLERING CONTRACTOR AND ADDRESS OF	(c)(())())())())()()()()()()()()()()()(
1 	2	3	4	5

Detector resolution 0.3 µm

A. Souvorov et al

Fabrication of silicon parabolic lenses

Thermal oxidation of Si wafer

Resist spin, exposure and development

Anisotropic oxide etching in CHF₃ plasma

Deep silicon etching in "Bosch process"

Inaccuracies in deep silicon etching

Etched depth and shape of trenches depend on aspect ration and/or trench width

- 1 mm-wide trenches have negatively sloped sidewalls
- 20 µm trench exhibits nearly vertical profile

Mask undercut is:

- in the range of $0.5-0.6 \ \mu m$
- independent on the trench width

Deviation of the parabolic refractive profile from the ideal one caused by mask undercut and sidewall etching during silicon etching down to $200 \ \mu m$

Parabola approximation

Profile deviations: experiment and simulation

3.5µm tolerance E=20 keVF=40 cm

N = 32

A= 500 μm

Lens-to-detector distance 43 cm

Lens number	Energy, keV	Number of lenses, 2N	Lens length, cm	Aperture, µm	Focal spot, µm	Focal distance, cm
S6 - 1	10	6	1.28	500	3.6	50.4
S6 - 2	12	8	1.86	500	3.7	51.1
S6 - 3	14	12	2.51	500	3.6	50.8
S6 - 4	16	14	3.33	500	3.7	50.1
S6 - 5	18	20	4.18	500	3.9	50.5
S6 - 6	20	24	5.17	500	3.6	51

Long BL: 100m Source 50µm x 150µm

F = 10 cm 50 nm x 150 nm Demagnification X 1000

Lens chip design

......

>150 CRLs !

22 mm

LEO 1530 Mag - 74 X EHT - 20.00 kV Signal A - SE2 Date :27 Mar 2006 Gun Vacuum = 1.10e.009 Torr WD - 9 mm Output To - Default Printer Time :16:41:04 Noise Reduction - Line Int. Done

A STATE OF STATE

9 - C

Test at BM05/MOTB in April 2006

E = 15-30 keV resolution 200-300 nm

Test at ID15 in May 2006

resolution 200-300 nm

Best: 150 nm at 50 keV!

Bi-lens / Billet split lens

50 - 100 μm 👔

Spatial coherence characterization MOTB/BM5

E = 13 keV Effective source size ~100 μ m

Applications

- •High energy X-ray microscopy: diffraction, spectroscopy, imaging
- •Beam collimation for high resolution diffraction (< μrad)
- •Beam shaping elements / Wave front correction
- •Interferometry
- Beam diagnostics
- •Optics for X-ray Free Electron Lasers

Integrated X-nanoprobe system

Planar parabolic lenses with scaled reduction of curvature radii

I. Snigireva, A. Snigirev, S. Kuznetsov, C. Rau, T. Weitkamp, L. Shabelnikov, M. Grigoriev, V. Yunkin, M. Hoffmann, E. Voges, "Refractive and diffractive optical elements", Proceedings of SPIE 4499, 64-74 (2001)

Number of lenses, N	Entrance radius	Aperture max.	Scaling factor, <i>q</i>	Exit radius
20	250 µm	500 µm	0.93	63 µm

E = 17.45 keV / F = 25 cm

Focusing Hard X Rays to Nanometer Dimensions by Adiabatically Focusing Lenses

C. G. Schroer¹ and B. Lengeler²

¹HASYLAB at DESY, Notkestrasse 85, D-22607 Hamburg, Germany ²II. Physikalisches Institut, Aachen University, D-52056 Aachen, Germany

Si lens with minimized absorption

Phase shift πM , M=2, 4...

"Fern"- like profile Si lens

Refractive lens with kinoform profile (inline segments) has minimum total length but this dsign is complicated for realisation due to extremely wide range of feature width. To narrow this range "fern"- like profile is proposed where even (or odd) segments are inverted

1.2 kV ×600 50.0

Richard M. Bionta Prototype Focusing Element for the LCLS Warm Dense Matter Experiment

"blazed phase lens"
Diam. 100 μm
Al 79 μm
Groove hight 18.7 μm
Designed for 8 keV

Bragg-Fresnel Optics

Bragg-Fresnel optics based on

- Crystal

MultilayerPhotonic crystals

Linear BFL Si (111) $A = 200 \ \mu m$ $\Delta r_n = 0.3 \ \mu m$

> Circularar BFI Ge (111) $A = 200 \ \mu m$ $\Delta r_n = 0.3 \ \mu m$

> > Multilayer BFL elliptical W / Si, 56 periods length = 18 mm width = 136 μ m $\Delta r_n = 0.3 \mu$ m

WD=

ESRF

21-Jun-1995

6 mm 2μ Photo No.=249

Mag=

1.30 K X

EHT=20.00 kV WD= 9 mm 10µ 6-Jun-1995 ESRF Photo No.=170 Mag= 744 X

Microfluidics of soft matter investigated by small-angle X-ray scattering

Alexander Otten, Sarah Ko[°]ster, Bernd Struth, Anatoly Snigirev and Thomas Pfohl

J. Synchrotron Rad. (2005). 12, 745–750

design of the microfluidic device

microfluidic pumping system.

Microfluidics: microbeam small-angle X-ray scattering

Schematic of the 8CB droplet formation with diffraction patterns observed at three different observation positions along the formation process.

Alexander Otten, Sarah Ko[°]ster, Bernd Struth, Anatoly Snigirev and Thomas Pfohl. J. Synchrotron Rad. (2005). 12, 745–750

Schematic of the self-assembling of DNA multilamellar membranes in a hydrodynamic focusing and mixing device.

Fourier Transform Diffraction/Imaging

APPLIED PHYSICS LETTERS 86, 014102 (2005)

X-ray high-resolution diffraction using refractive lenses

Michael Drakopoulos Diamond Light Source Ltd., Chilton, Oxfordshire OX11 0QX, United Kingdom

Anatoly Snigirev and Irina Snigireva European Synchrotron Radiation Facility, 38043 Grenoble, France

Jörg Schilling California Institute of Technology, Pasadena, California 91125

Theory: the Bragg law

Ordinary (atomic) crystals: $d \sim \lambda$ => large diffraction angle 2 θ

X-rays: λ~ 1 A

Colloidal crystals: d>>λ => small diffraction angle 2θ (10⁻⁴ ... 10⁻³ radian) sinθ = nλ/2d; n=1,2,...

A

Latest news:

Microelectronics / nanotechnology applications

<u>SOI technology – strained Si - charge carrier mobility</u>

Needs:

- Local strain analysis

- Depth structure analysis of dislocations resolutionn < 10 nm !

wafer level - transistor level

TEM: converging e-beam diffraction problems:

- does not see dislocation density <10⁴
- sample preparation
 - thin sample relaxations!

X –ray diffraction microscopy converging coherent x-ray beam diffraction ?

strained Si (~20 nm) Si-Ge (1-2 μm) Si The first experiments with ERL will very quickly develop new classes of experiments as they gain experience with their unique source properties