

Local Ordering of Fluids and

Other Nanobeam Applications & Waveguides

J. Friso van der Veen Paul Scherrer Institut, Villigen and ETH-Zürich

- Confining a fluid; why, how?
- Diffraction from fluid-filled nanocavity arrays
- Nanofocus for diffraction from single cavity
- Outlook

ERL X-Ray Science Workshop #6, Cornell, USA, 23-24 June 2006

Acknowledgements

Confined fluids

- Ana Diaz (PhD student)
- Oliver Bunk
- ➡ Franz Pfeiffer
 - Dillip Satapathy
 - Heilke Keymeulen (PhD student)
 - Celestino Padeste
 - Phillip Willmott
 - **Bruce Patterson**
- Bernd Schmitt Tracy Guo, (PhD student) Univ. Amsterdam Gerard Wegdam, Univ. Amsterdam

Focusing properties of waveguides and FZPs

Christoph Bergemann, Univ. Cambrige Franz Pfeiffer

Confined fluids: Motivation

Microfluidics

JF van der Veen, ERLWorkshop #6

Density profiles reveal confinement effects

Ordering close to surfaces

Integer/fractional effects

Do they exist?

O. Bunk et al., Phys. Rev. E75 (2007) 021501

Scattering from filled microcavity array

O. Bunk et al., Phys. Rev. E75 (2007) 021501

A. Diaz and J.F. van der Veen, Thin Solid Films 515 (2007) 5645

PAUL SCHERRER INSTITUT

One data set for each grating

n86 filled #232-255 (combined, filter corrected, symmetrized)

Data analysis using iterative phase retrieval

O. Bunk et al., Acta Cryst. A63 (2007) 306 -314

Combining algorithms:

- Gerchberg Saxton's error reduction
- Hybrid Input Output (Fienup)

Constraints:

- constant phase and amplitude in Si walls
- amplitude and phase coupled in the gap
- ±0.1 rad phase range in the gap
- no restriction in the regions near the confining walls

Fig. 1. Block diagram of the error-reduction (Gerchberg-Saxton algorithm.

Fienup, Appl. Opt. (1982)

....but many valid solutions!

Free space *back* propagation in each iteration minimizes propagation effects

....allows for tighter constraints.

Phase retrieval: statistics

Phase retrieval: how to...

- The constraints determine the position of the reconstructed plane.
- Even thin objects like few microns deep gratings exhibit in their exit field propagation effects.
- Free space back propagation can be used to reduce propagation effects.
- Refinement of several initially random solutions
- Rejecting very dissimilar solutions
- Several solutions should be averaged to estimate the uncertainties.

Comparison measured/calculated intensities

O. Bunk et al., Acta Cryst. A63 (2007) 306 -314

Charged spheres Hard spheres

10 vol% silica spheres in 55% benzyl alcohol 45% ethanol

PAUL SCHERRER INSTITUT

Oscillatory ordering

ERL: XPCS of confined fluids

Correlation between stucture and dynamics

Confinement-induced slowing down?

Study also 2D confinement!

ERL: Nanofocus for studies of fluids confined in single nm-sized gap

Wedges and capillaries

M.J. Zwanenburg et al., Physica 283B (2000) 285

D. H. Bilderback et al., Science 263 (1994) 201

- Squeeze X-ray beams
- Become waveguides for small diameters
- Coupling into the waveguide critical for efficiency

Waveguide modes are found by solving Helmholtz equation: $\Delta u + n^2 k^2 u = 0$

Equivalence to particle-in-a-box problem

Write $u = \psi(x, y)e^{-iky}$, with ψ slowly varying envelope function.

Substitute in Helmholtz eq. and neglect $\partial^2 \psi / \partial y^2$.

$$-\frac{1}{2k^2}\frac{\partial^2\psi}{\partial x^2} + \delta \cdot \psi = \frac{i}{k}\frac{\partial\psi}{\partial y}$$
 Schrödinger equation

Wedge \iff Box of shrinking size

Lowest state remains bound:

What is the smallest possible spot size ?

JF van der Veen, ERLWorkshop #6

Ultimate resolution of Fresnel zone plates (FZPs) (I)

F. Pfeiffer et al., Phys. Rev. B73 (2006) 245331

Theoretical minimum spot size: $\Delta x_{min} \sim d_{min}$, with d_{min} outermost zone width.

C. David et al. Spectrochimica Acta B59 (2004) 1505

Solve for eigenfunctions of Schrödinger equation for the array of box potentials.

- Outermost zone width $d_{min} = 1.5$ nm,
- Nr. of zones: 600
- $-\,\lambda=0.1\,\,nm$
- Silicon δ = 3.17 x 10⁻⁶
- Thickness 15.8 µm
- Standing waves up to order 6000 as basis functions

Diagonalize 6000×6000 matrix.....

Illumination by plane wave

JF van der Veen, ERLWorkshop #6

Illumination by cylindrical wave

x [nm]

-500

2

3 4 distance z [µm]

5

F. Pfeiffer et al., Phys. Rev. B73 (2006) 245331

PAUL SCHERRER INSTITUT

50

0 0.5 1 Int. [norm.]

x [nm]

0 0.5 1 x 10⁴ Int. [norm.] -10

-15

20

30

40

distance z [µm]

Ultimate resolution of FZPs

F. Pfeiffer et al., Phys. Rev. B73 (2006) 245331

PAUL SCHERRER INSTITUT

Outlook

- Confined fluids correlate structure and dynamics *Relevance*: lubrication, wetting, transport though narrow pores (membranes), protein folding, etc.
- Nanofocusing required for studies of single pores FZPs: no fundamental limit on minimum spot size. But there are practical limits.....