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Summary 

We have researched the problem of using  X-Ray Fluorescence to perform single-atom im-
aging and spectroscopy studies, both in free-standing samples and in detecting individual impurity 
atom dopants in wafers of silicon.  Using numbers corresponding to currently available synchrotron 
radiation sources such as the ESRF, we found that it is all but impossible to presently image single-
atom sized samples, with only one impurity fluorescent photon entering a detector every ten sec-
onds, on average.  The minimum mass-detection capacity of existing sources such as ESRF is calcu-
lated to be around 2.5 × 10-19 grams or about 1000 atoms with present day beamsizes of order 1 mi-
cron.    

However, using predictions of a nanoprobe beam line on a possible Cornell University En-
ergy Recovery Linac (ERL), with 1 nm beam size and an incident flux of 2.5 × 1012 x-rays/sec at 10 
keV, we have calculated that the signal to a solid state detector from one single fluorescing Erbium 
impurity atom would be 2.6 × 106 photons/second  on top of  a background of  3.2 × 106 pho-
tons/second from Compton scattering from a 100 nm thick wafer.  With these high count rates we 
believe it will be not only possible to spatially locate single impurity atoms in a relatively bulk portion 
of a silicon wafer to nm resolution, but also to spectroscopically examine their  near neighbor envi-
ronment with XANES or EXAFS and to determine whether they are electrically active or not.  This 
may be very useful to researchers pushing the nanofabrication of circuits to the fundamental limit of 
an atom size. 

 

* to whom correspondence should be addressed, email:  dhb2@cornell.edu 

  



 

Introduction 

X-ray fluorescence is a powerful tool for quantitative chemical analysis and spectroscopy.  X-
rays can be used to ionize the inner electrons of an atom in a material and when the atom returns to 
the ground state, it emits characteristic x-ray radiation characteristic of its atomic number and 
chemical state.  With microbeams from present 3rd generation x-ray sources, the presence of as few 
as 1000 high-z atoms can be detected in a beam size of order 1 micron in diameter.  

In this study we explore how much more the sensitivity can be improved when more power-
ful sources of microbeam x-rays are considered, such as from a Energy Recovery Linac source of 
synchrotron radiation when detected by a standard energy-dispersive solid-state detector.   

To demonstrate the potential resolving power of high-intensity X-Ray sources through X-
Ray fluorescence, we have undertaken a calculation below to demonstrate the theoretical detection 
limits with current X-Ray sources.  To evaluate the practical consequences, we put in some of the 
parameters of  the one of the premier microbeam stations of ID13 at the European Synchrotron 
Radiation Facility (Grenoble, France) and then extended the argument to the Energy Recovery Linac 
being proposed for Cornell University. 

We have examined only the effects produced by the particular energy of radiation that will 
prove useful in the particular element that we are trying to image; the full brilliance curve of a par-
ticular synchrotron source will contain a distribution of energies with varying source intensities at 
different energies, but the energies very far from the particular absorption edge of our element of 
interest will not concern us much as we calculate the signal-to-background ratio for x-ray sources 
after a single-crystal or multilayer monochromator to try to better optimize the excitation of fluores-
cence.  Since the limiting quantity in any fluorescence-detection experiment is ultimately the photon 
flux at our detector, we proceed below to calculate the photon flux through to a detector with as-
sumed parameters from a microbeam x-ray source and apply it to ESRF and ERL situations. 

 

Mass-Detection Limits 

Let us say that we have an incident beam which has a flux of Io photons/second through a 
area, A, on the surface of our sample.  The quantity of flux that is lost as the beam goes through a 
certain thickness of the sample is proportional to the depth into the sample: 

 dI/dx = -µx  (1) 

I is the flux through a plane at depth x into the sample, and µ is a constant called the photon 
attenuation coefficient.  µ is, in general, a function of the energy of the incident radiation and the 
element that is being subjected to the radiation.  Equ. (1) is a simple first-order differential equation, 
with the general solution: 

 I = Ioexp(-µx) (2) 

  



Io is the flux impinging on the surface of the sample and exp(x) is the natural exponential 
function.  Equ. (2) describes the flux at any depth into the sample.  However, we are not interested 
in the flux at any point in the sample; we are more interested in the quantity of x-rays that do not 
make it to that particular point in the sample.  The  x-rays that do not make it to a particular point in 
the sample those that are either absorbed by the sample through photoelectric interactions, or scat-
tered by the matter via Compton and Rayleigh scattering effects.  Scattering effects may be neglected 
when we are considering the amount of photon flux (i.e. useful signal) produced at the detector, but 
they are very important when we begin to examine the background noise that makes its way to the 
detector.  For this derivation, however, we shall ignore scattering effects and shall at the end supply 
a separate calculation (see Appendix A) of the relative strength of Compton scattering. 

The quantity of light that is absorbed through photoelectric absorption into the sample (and 
therefore the number of atoms that are put into an excited state), therefore, is equal to: 

 I = Io(1-exp(-µx)) (3) 

.  Not all of these excited atoms will yield fluorescent photons; some will yield free electrons 
and thus not contribute to our useful signal in a solid-state detector.  The proportion of excited at-
oms that yield fluorescent photons is a unit less ratio called the photoelectric yield , denoted by ϖ 
(where 0<ϖ<1). 

 If = Ioϖ(1-exp(-µx)) (4) 

Equ. (4) describes the total number of fluorescent photons emitted by our sample per unit 
time.  However, a detector of entrance area A2 that is a distance R away from the samplest will 
never be able to capture all of these liberated fluorescent photons.  The the fraction of them inter-
cepted is proportional to Ω, the ratio of the surface area of the detector.  The fraction of the fluores-
cence intercepted is this solid angle divided by4π   Thus the  flux of fluorescent photons to the de-
tector is: 

 Id = Ioϖ*(Ω/4π)*(1-exp(-µx)) (5) 

Now, to determine our detecting limits, we assume that we have some sort of minimum 
count rate at the detector Im, below which our detector cannot effectively obtain data.  Then we can 
solve for the “thickness” x of the sample that will give us something useful in terms of flux through 
the detector and thus we will have a practical mass-detection limit.  We know the area of the beam 
impinging on the sample, and we know the density of the material that we are trying to image (pre-
sumably), so we can find the minimum mass (since mass is equal to density times volume, or density 
times area times thickness) that can be resolved through this method.  To facilitate the extraction of 
the thickness x through this, we can make a simplifying assumption that (µx) is a small quantity for 
thin samples.  Therefore, by Taylor’s theorem: 

 exp(-µx) ≅ 1 – µx …   (6) 

and plugging (6) back into (5), we finally have: 

 Id = Ioϖ*(Ω/4π)*(µx) (7) 

Rearranging and solving for x gives us: 

  



 x = 4πId/(IoϖΩµ) (8) 

The mass-detection limit(MDL), therefore, will be equal to: 

 MDL = 4πIdAρ/(IoϖΩµ) (9) 

where A is the area illuminated by the beam (the beam spot size) and ρ is the density of the material 
being studied.  Note that the parameters over which the experimenter has control is that of the inci-
dent beamsize, incident beam intensity, and the detector solid angle. 

As a direct example to show the range of mass detection possible even with current technol-
ogy, let alone future x-ray sources such as the Energy Recovery Linac, we have below done a direct 
calculation with currently available x-ray source brilliances (as available at beam ID13 of the ESRF). 

The particular element that we wanted to examine was Erbium (atomic number 68, with 
fluorescence in the 6.9 to 9.0 keV range), which, for now, I will assume is a freestanding sample .  
The necessary parameters for this particular calculation are the incident intensity Io = 1010 pho-
tons/sec, the beam size A = 1 µm2, ρ = 9.066 g/cm3, and an assumed minimum detector intensity Id 
= 10 photons/sec.  Erbium has it’s L-absorption edge (that is, the highest energy which will excite 
electrons out of the L-shell) at 9.75 keV1, so a good energy to choose for our incident radiation is 10 
keV.  The mass-attenuation coefficient at this energy is (µ/ρ) = 269.4 cm2/g2.  Erbium’s fluorescent 
yield for its L-shell electrons is ϖ = .24103.  The particular detector that was employed subtended a 
solid angle of π/4 steradians (detector had a circular face of 5 mm diameter located at a 10 mm dis-
tance from the sample). 

Therefore, the thickness limit obtained was 2.718 × 10-11 cm.  The area illuminated was 1 
µm2, or 10-8 cm2.  The volume limit on the sample, therefore, is 2.718 × 10-19 cm3.  Multiplying this 
by the density gives us the mass-detection limit, or 2.46 × 10-19 g. 

To find out how many atoms this corresponds to, we can merely divide this mass by the 
mass of an individual Erbium atom.  The mass of an individual Erbium atom, in grams, is obtained 
by taking the mass of one mole of Erbium (167.26 g) and dividing by Avogadro’s Number (NA = 
6.022 × 1023).   Performing the calculations allows us to obtain the number of atoms that can be re-
solved by this method as being 8.8 × 103 atoms. 

If we were to try and decrease the resolving limits, one of the first and easiest things to do 
would be merely to increase the solid angle of the detector.  If we were to have a detector that com-
pletely encompassed one side of the sample, it would subtend a solid angle of 2π steradians.  This 
would be an increase in Ω by a factor of 8, or therefore a corresponding decrease in mass-sensitivity 
and atom-sensitivity by the same factor of 8.  The atom-sensitivity would now decrease to 1.1 × 103 
atoms.  This is quite small. 
                                                 

1 Various Authors, X-Ray Data Booklet, (2001), < http://xdb.lbl.gov/ >, Section 1.2 

2 Hubbell, J.M. and S.M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass-Energy Absorption Coeffi-
cients, (1996), < http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html > 

3 Table of Fluorescence Yields, < http://www.seismo.berkeley.edu/geology/labs/epma/fluoresc.htm > 

  



Further decrease of the detection limits would easily be accomplished by examining what 
will directly be possible with the proposed Energy Recovery Linac.  With data from Appendix B, we 
can see that, with the ERL as our x-ray source, we can now create beams with 2.5 × 1012 pho-
tons/second with a spot size of 1 nm2.  With such a source (and a 2π steradian detector solid angle), 
we can achieve mass detection limits of 7.70 × 10-27 grams.  This is actually well below the mass of 
one Erbium atom (which is of the order 10-22 grams), so the fluorescent x-ray flux received from a 
single atom with the ERL source would be more than enough to get a decent image. 

Single-Atom Dopant Imaging 

In a recent AEP seminar (February, 2002), Dr. Paul Voyles from Bell Laboratories gave a 
talk about imaging the location of a single Sb atom in a 20 Angsgrom layer of silicon (work being 
written up for publication) with an electron beam.  It caused us to ask if we could do the same thing 
with x-rays, but now in a more bulk-like situation when we have have a "thicker" sample and all the 
tools that have been developed in during the last 100 years of x-ray science.   

As we will see below, it may not only be possible to image the location of a single atom, but 
also to perform spectroscopy on a single atom to determine its local chemical environment (from 
the near edge XANES and the extended EXAFS region of the absorption curve).  This has interest-
ing consequences for semiconductor electronics circuits, for instance,  that are pushed to the ulti-
mate nm dimension.  We will have the spectroscopy tools to diagnose which dopants are electrically 
active and which are not - thus an ERL x-ray nanoprobe may open new opportunities in this arena 
of semiconductor research. 

To focus in on single atom image, let us now take another example, somewhat distinct from 
the general case of the first that was discussed above.  Let us assume that we have a single Erbium 
atom embedded in a thousand-angstrom thick layer of Silicon.  What will be the fluorescent output 
flux?  Now, we have a situation that is more easily analyzed somewhat differently than the analysis 
shown above.  If we have a single atom and we are shining light of a particular color onto it, then 
the amount of flux that is absorbed through any particular interaction (for example, the photoelec-
tric interaction) is given by the product between the incident intensity (defined as flux per unit area, 
general units of energy or photons/unit area/unit time) and the cross-section of the atom for that par-
ticular interaction.  Therefore, the amount of flux that is absorbed by a single atom via the photo-
electric interaction, let us say, is given by the incident flux times the photoelectric cross section of that par-
ticular atom at that particular energy.  The total cross section (photoelectric + scattering) can, of 
course, be obtained from the photon attenuation coefficient and vice versa (this will be discussed 
later as necessary).  Now, our expression for the fluoresced intensity changes somewhat.  I will state 
the new formulation below and discuss the ramifications of the change and how it makes things eas-
ier to discuss things in this new notation.  The fluorescent flux is given by: 

 If = Ioϖσpe/A  (10) 

In this formulation, however, If and Io are the fluoresced and incident flux, and A is the size 
of the beam (thus, Io/A is the intensity of the incident beam), and σpe is the photoelectric cross-
section of the particular atom that is being studied. ϖ, the fluorescent yield, plays the same role that 
it played before, as a factor describing the number of fluorescent photons produced per excited 
atom.  Now, since this atom of Erbium will be embedded in a layer of silicon, the intensity at the 
atom will be attenuated beyond the intensity at the surface.  This attenuation can merely be factored 
in using a factor of exp(-µx), just as was derived in equations (1) and (2).  However, the µ is the pho-

  



ton attenuation coefficient for Silicon, not the coefficient for Erbium, since the intensity is being at-
tenuated through the Silicon substrate, not through the Erbium.  The total path length of light from 
the point of entry into the silicon layer to fluorescing at the Erbium atom to leaving the silicon layer, 
will be (on average) equal to a little more than the thickness of the layer.    Therefore, we can say 
that the total output flux from the sample will be: 

 I = Ioϖσpeexp(-µt)/A  (11) 

Once again, to find the amount at the detector, we multiply by the factor incorporating the 
solid angle of the detector: 

 Id = Ioϖ*(Ω/4π)*σpeexp(-µt)/A  (12) 

With the source figures given above, Io = 1010 photons/sec, (Ω/4π) = ½, ϖ = .2410, A = 10-

8 cm2, t = 10-5 cm, µ (Si) = 78.9637 cm-1, and σpe (Er) = 8.58 × 10-20 cm2.  (All figures are for an en-
ergy of 10 keV).  The obtained Id here is .01, which is well below one photon per second.  However, 
the useful information that can be shown from this is that, ignoring effects from background, a 
thousand fold increase in intensity will enable us to successfully perform single photon imaging 
(since we need an Id of 10 cps).  This supports the assertions found by the first calculation per-
formed above, which seemed to indicate that we could resolve objects as small as 1000 atoms with 
the ESRF source intensities that we were using above. 

Employing the ERL source figures that are calculated in Appendix B, with Io = 2.5 × 1012 
photons/sec, A = 10-14 cm2(a 1 nm beamsize created with assumed perfect optics), and all other fac-
tors the same, we obtain the photon count per second at the detector Id = 2.58 × 106 pho-
tons/second.  As you can see, this will easily be more than enough flux to get an excellent image 
quickly.  The criterion that had been stated before was a 10 photon per second signal at the detector 
to get an image in a reasonable time.  In Appendix A (please reorder the Appendicies as you have B 
coming before A) the Compton scattered count rate from the 100 nm silicon thickness is almost 
identical to the fluorescent count rate.. (This is not a problem, just count for a slightly longer time).  
Thus we conclude that it is within the realm of possibility to do x-ray fluorescence imaging and 
spectroscopy on a single Er atom impurity in a 100 nm thick silicon crystal. 

Acknowledgements:  This report summarizes some of the independent study (with Don 
Bilderback and Rong Huang) for an Applied and Engineering Physics 490 course taken by Soumen-
dra Banerjeee during the Spring semester, 2002. 

  



Appendix A. Quantitative Estimate of Background Due to Compton Scattering 

 Quite possibly the most important factor demonstrating the validity and usefulness of any 
experimental technique is the effective amount of information yielded by the experiment in a unit 
time.  Above, we have stated that the amount of information that is derived from the X-Ray Fluo-
rescence setup for imaging a dopant in a silicon lattice is equivalent to the number of fluorescent X-
Rays that make it to the detector in a given amount of time.  However, this is not exactly the full 
story.  This would be true if the only X-Rays that impinged upon the detector at any given time with 
energy equal to the L-emission energy of Erbium were, in fact, fluorescent X-Rays.  However, the 
effects of inelastic (Compton) scattering can shift the energies of incident photons to near the en-
ergy of the fluorescent photons, to such a degree that the fluorescent photons cannot be distin-
guished from the incident photons.   If this were to happen, then it would be significantly more dif-
ficult to detect the actual substance within the substrate.  Also just as important is the count rate that 
the solid state detector must count.  In most situations, the detector must count all the x-rays (fluo-
rescent + Compton).  The detectors have count rate limitation so the minimum detectable limit is 
determined not only by the count rate of the desired signal, but also by the count rate of the Comp-
ton scattering.   

 In this appendix, we first review the process of Compton scattering and then estimate the 
Compton count rate in the detector to the desired fluorescent count rate for the ERL situation 
where one erbium atom is located in a 1 nm diameter microbeam crossing a 100 nm thick pure sili-
con wafer. 

 Inelastic scattering, also known as the Compton effect, is caused when photons strike “free 
electrons” in a piece of matter.  Electrons that are reasonably far away from the nucleus, or have 
reasonably low binding energies compared to the energy of a given incident photon, can essentially 
be thought of as free electrons in space.  It is assumed that these electrons are, essentially, at rest be-
fore being struck by the incident photons.  Therefore, when a photon collides with one of these 
electrons, the collision will obey the familiar laws of mechanics: conservation of momentum and 
conservation of energy.  Employing the DeBroglie relations for the momentum and energy of a 
photon: 

 |p| = h/λ (13.1) 
 E = hν = hc/λ = |p|c (13.2) 

and, of course, the familiar (non-relativistic) expressions for Kinetic energy and momentum of the 
electron: 

 p = mv (14.1) 
 E = ½m|v|2  (14.2) 

it is possible to derive the Compton equation: 

 λ2 – λ1 = (h/mc) × (1 – cos φ) (15)4 

                                                 

4 Evans, The Atomic Nucleus, 675-676 (1955) 

  



In the above equations, h is Planck’s constant (6.63 × 10-34 J·s), c is the speed of light (3.00 × 108 
m/s), m is the mass of an electron (9.11 × 10-31 kg), v is the velocity acquired by the electron after 
being struck by the incident photon, λ2 is the wavelength (in meters) of the scattered photon, λ1 is 
the wavelength of the incident photon, and φ is the angle between the direction of the incident pho-
ton and the direction of the scattered photon. If we make the assumption that the Compton-
scattered radiation (in the non-relativistic limit, again) is essentially isotropic, we can easily see that 
there is a very narrow spectrum of radiation produced from a single collision.  The order of magni-
tude of the (1-cos φ) term will be at most of order unity, and (h/mc) has the value 2.43 × 10-12 m.  
Given that our incident radiation will have wavelengths of order 10-10 m, the corrections and disper-
sion of the radiation by the Compton scattering will be negligible.  The Compton-scattered spectrum 
from each atom, then, will be roughly evenly distributed between the maximum possible energy of 
the scattered photons (equal to the incident energy, here assumed to be 10 keV) and the minimum 
possible energy.  The minimum possible energy will have the highest wavelength (which would be 
the wavelength found when φ = π/2, if we look only at "forward" scattered photons and "forward" 
fluoresced photons).  λmax= λ0 + λshift, where λ0 = 1.24 × 10-10 m (10 keV), and λshift = 2.43 × 10-12 m, 
λmax = 1.26 × 10-10 m, and thus Emin = 1.57 × 10-15 J = 9.81 keV.  Thus, the Compton scattered en-
ergy distribution, which, in the non-relativistic limit, is relatively spherical, will have a spread be-
tween the 10 keV incident beam and the 9.81 keV “sidescatter” beam.  Repeated collisions (scatter-
ing of scattered photons) will further reduce the bottom limit on the energy, but the  "peak" of the 
Compton-scattered spectrum will lie between 10 keV and 9.81 keV, with decreasing numbers of 
photons at lower energies.  The full Compton spectrum will extend all the way down to photons of 
near-zero energy as their wavelengths are progressively increased through repeated collisions.  How-
ever, the number of photons will actually decrease as we look at lower-energy Compton photons, 
and so there will be a diminishing energy distribution all the way down to photons of near zero en-
ergy. 

 The best means to determine the total number of Compton-scattered photons that enter the 
detector is by employing the Compton-scattering cross-section of the substrate.  In our case, the 
substrate is silicon, so the Compton-scattering cross-section is 5.04 × 10-24 cm2/atom5 (at 10 keV).  
The relationship between the scattering cross-section and µs, the linear scattering coefficient, is: 

 µs = σρ/µA  (16)6 

where σ is the Compton-scattering cross-section of the atom, ρ is the density, µ is the atomic mass 
unit (1.6605402 × 10-24 g/Dalton), and A is the atomic mass in Daltons of the atom of interest.  The 
atomic mass of silicon is 28.0855, and the density of silicon at room temperature is 2.329 g/cm3.  
The attenuation coefficient, therefore, is .2517 cm-1.  Using our prior assumption that we can ap-
proximate (1-exp(-µt)) as being just (µt), we can say that the total Compton scattering into a half-
sphere (solid angle of 2π) as being: 

 I = IO(µt)/2 (17) 

which would imply that the total Compton scattering into our 2π solid angle detector is about 2.5 × 
102 photons per second with an ESRF source.  Employing source data for the ERL, however, our 
                                                 

5 Veigle, W.M., Atomic Data Tables, 5, pp. 51-111 (1973) 

6 Hubbell and Seltzer, Section 2. < http://physics.nist.gov/PhysRefData/XrayMassCoef/chap2.html > 

  



scattering count jumps up to 3.15 × 106 photons/sec.  However, despite the fact that this number is 
actually a little larger than our signal intensity with the ERL source, we recognize the fact that this 
number reflects a number of photons scattered into a rather wide spectrum of different energies.  
The portion of this total number that actually contributes to effective noise is at most one tenth of 
the total number of scattered photons, since it is not likely that much more than this number will 
come out of the sample with an energy close to the energy of the fluorescent photons from the Er-
bium.  While the rest of the photons do go into the detector, we will obviously be able to discard 
them as noise in the data set.  However, photons at energies near the fluorescent energy (roughly 
9.75 keV, for Erbium's L absorption edge) will not be easily discernible, and thus only these will fac-
tor into our experimental measurement as noise.  Therefore, although there will be quite a bit of 
background noise, the effective amount that we need worry about will not be more than 3.15 × 105 
photons/sec, which is about a factor of eight less than the signal strength obtained, 2.58 × 106 pho-
tons/sec.  This number is also virtually a worst-case scenario; if the scattering had been a real prob-
lem, it would be quite possible to increase the energy of the incident radiation slightly such that the 
bulk of the Compton-scattered spectrum would be further away from the energy of the fluoresced 
photons to reduce the effective noise even further.  

  



Appendix B: Flux estimation from 2m long ERL  undulator with perfect  mi-
crobeam optics 

Introduction The purpose of this calculation is to estimate the flux from an ERL 2m long undula-
tor source when focused down to a 1 nm focal spot size by ideal optics. 

 

ERL Undulator source 

The source parameters of the ERL undulator for microbeam experiment was assumed as: 

Machine parameters:  G = 5.3GeV, I = 10mA, σE/E = 0.0001 

Electron beam emittance:  0.01 nm-rad (horizontal or vertical), Beta function (H or V) = 1 m 

RMS source size:  σx = σy = 0.0032 mm;    

RMS source divergence: σx
' = σy

' = 0.0032 mrad; 

Undulator period length:  λu = 2 cm 

Undulator period number: 100 

Undulator total length: 2.0 meters 

Source to station hutch distance: 25 meters 

 

 

ERL Microbeam Undulator radiation 

 

(1) To use 10 keV, from the tuning curve (calculated with XOP v2.0) it can be seen that the strong-

Fig.1 

  



est radiation is the third harmonic. 

 

Fig.1 the tuning curve of ERL 2m undulator source, calculated with first order harmonic energy 
range from 2.9keV to 13.3keV.  

 

(2) From the equation[1]: 
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for the third harmonic (i=3) and Ei=10keV, λu=2cm, it was calculated that the deflection parameter 
k=2.450007 

 

(3) The undulator flux at 25m away  

Fig.2  Flux on an aperture. Calculated with ky=2.449, observation distance of 25 meters, at position 
of V = H = 0, and aperture size of 0.3 mm x 0.3 mm. Calculation mode = 4 (means flux on aper-
ture), ICAL = 1 (means non-zero emittance and finite N). Undulator type: plane, number of calcula-
tion points = 100. 

  



Fig.3  Spatial profile at 25 meters away from source, calculated at energy of 10 keV (Emin=10000eV), 
all harmonic included, and at position of H = V = 0. Other input parameters: 5.3GeV and 10mA 
beam, σx= σy= 0.0032mm, σx

'= σy
'=0.0032mrad, D=25m, mash grid number of points: 25 x 25, 

non-zero emittance, finite N, mode=1 (means angular/spatial flux at Emin), acceptance (i.e. the calcu-
lation spatial range): 1mm x 1mm.  

 

 

 With assumption that x-ray station is about 25 meters away from the source and deflection 
parameter ky=2.449, the flux through a 0.3mm x 0.3mm slit, 5--20 keV was calculated as in fig.2. 
The spectrum has very sharp peaks of harmonics.  

 

 The spatial profile of the radiation at 10 keV, 25 meters away from source is shown in fig.3, 
where the spot size (FWHM) looks about 0.3 or 0.4 mm. With a 0.3 mm aperture we should be able 
to collect most of the photon flux from the source without much waste. 

 

  



 In order to calculate the x-ray flux after a monochromator, we calculated the x-rays flux 
through a 0.3 mm x 0.3 mm area, on axis, with a narrow energy range around 10 keV. As shown in 
fig.4, the flux intensity is about 2x1013 ph/sec/0.1%bw within the calculated +/-10eV range.  

 

Fig.4  Flux on an aperture, similar input as used for fig.2, except the energy range is changed to 
10keV +/- 5 eV. It can be seen from this plot that even though the undulator spectra are very nar-
row as shown in fig.2, the intensity is quite constant within 1.2eV range around 10keV that is ac-
cepted by a crystal monochromator. 

 

 

 

(4)  Bandwidth of double flat perfect Si(111). 

 Suppose a set of double (flat and perfect) Si(111) crystals will be used for the monochroma-
tor, the x-rays bandwidth of σ mode x-rays after the crystal is shown in fig.5, with integral width 
about 5 arc seconds. With other parameters output from the XOP code: d=3.1356Å, θB=11.4°, it 
can be calculated that ∆λ=1.5x10-4Å and ∆E=1.226 eV. 

 

 

 

 

  



 

Fig.5  The reflectivity band width passing one and double flat perfect Si(111) crystals at 10 keV. 
Other input parameters are: asymmetry angle = 0, crystal temperature = 300 k, crystal thickness = 
500 µm and the calculation mode = reflectivity in Bragg case. 

 

 

 

(5) Undulator flux though both Si(111) monochromator and ellipsoidal mirror 
From section (3) it has been known that the x-ray flux passing through 0.3 mm by 0.3 mm 

(9x104 µm2) aperture is: 

 F = 2x1013 ph/sec/0.1%bw ;  

and from section (4) it has been known that the energy width of the flat perfect double Si(1111) is  

 ∆E = 0.001226 keV;  or:  BW = ∆E/E =1.2x10-4 . 

From "Possible 1 nm scale focusing on ERL" (another summary by R. Huang and D. Bilderback) it 
has been estimated that an ideal ellipsoidal mirror of making 5 nm focal size may have the accep-
tance of 6x104 µm2 (assuming ellipsoidal mirror maximum acceptance area is 1/4 of a whole ellip-
soidal capillary). Therefore the total x-ray flux goes to the final 5 nm spot will be (also assume 100% 
reflectivity of the ellipsoidal mirror): 

 2x1013*(6x104/9x104)*(0.001226/10/0.1%) = 1.63x1012 (ph/sec/5nmSpot) 

Assuming the further 1 nm x-ray squeezing channel will deliver 1/25 of the 5 nm diameter 
x-rays to 1 nm size spot, the final x-rays can be focused into a 1 nm spot with ideal optics will be: 
6.5x1010 ph/sec 

 

  



(6)  Undulator flux at 1 nm spot by zone plate approach 

 From "Possible 1 nm scale focusing on ERL" it has been known that a 8.5x104µm2 accep-
tance ideal zone plate (with diameter of 0.33 mm) may focus 0.1eV BW x-rays down to 1 nm in one 
step with efficiency of 0.406, therefore the total x-rays the zone plate delivered to this 1 nm spot will 
be:  

 2x1013*(8.5x104/9x104)*(0.1/10000/0.1%)*0.406 = 7.67x1010 ph/sec 

It seems that an ideal zone plate can deliver the same amount of photons to 1 nm spot as an ideal 
mirror can do even with a much narrow bandwidth because an ideal zone plate can focus x-ray into 
a larger divergence angle than any reflection optic can do. Meanwhile, using zone plate will have the 
advantage of make a 1 nm focal spot in one step.  

 

 

(7)  Using 1% multilayer to accept the whole 3rd harmonic and ellipsoidal mirror 
The bandwidth of the 3rd harmonic of 2m ERL undulator is about ∆E/E = 1/iN = 1/300, with ∆E 
about 33eV at 10keV, therefore a 1% bandwidth of multilayer will pass almost all of the photons of 
the 3rd harmonic. Fig.6 shows the spectrum of the flux through a 0.3mm x 0.3mm aperture 25 me-
ters away from the source, with the integral of the flux from 9950eV to 10050eV of 9.5x1014 
ph/sec/0.1%BW*eV = 9.5x1013 ph/sec.   

 

 

 

Fig.6  The spectrum of the flux through a 0.3mm by 0.3mm aperture 25 meters away from the un-
dulator, from 9950eV to 10050eV. The integral intensity within this energy range is 9. 53x1014 
ph/sec/0.1%BW*eV = 9.5x1013 ph/sec, assuming 0.1%BW = 10 eV at E=10keV. 

 

  



  

 The total x-rays collected by a 6x104µm2 ellipsoidal mirror (see "possible 1 nm scale focusing 
on ERL") into 5 nm diameter spot will be: 

 9.5x1013 x (6x104/9x104) = 6.3x1013 ph/sec 

If 1/25 of this photons can be collected by a micron channel to make a 1 nm spot, the x-rays flux 
into this 1 nm spot will be 2.5x1012 ph/sec, about 33 times higher than using double Si(111) crystal. 

 It can also be seen from this undulator tuning curve (fig.1) that at 10eV the radiation inten-
sity of 1st order is only slightly smaller than 3rd order harmonic. Therefore if we use 1st harmonic at 
10keV with broader energy width radiation, using multilayer may collect another factor of 2 to 3 
times more photons. 
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