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Abstract

Cornell University has proposed an Energy Recovery
Linac (ERL) based synchrotron-light facility [1] which can
provide improved X-ray radiation due to the high beam
quality which is available from a linac. To additionally
utilize beam currents that are competitive with ring-based
light sources, the linac has to operate with the novel tech-
nique of energy recovery. Cornell plans to address the out-
standing issues of high-current injector, higher-order mode
damping and extraction from superconducting RF environ-
ment, etc. in a downscaled prototype ERL prior to submit-
ting a proposal for a full-scale machine. The flexibility of
linacs allows for different modes of operating the ERL X-
ray source, each of which requires specific manipulations
of longitudinal phase-space that restrict the choice of the
lattice. Here we discuss the different proposed modes of
operating the ERL X-ray source and present options for
corresponding lattices.

INTRODUCTION

Linac-based accelerators have the potential to deliver
beam of exceptional quality in terms of both transverse and
longitudinal emittance. While the former is determined pri-
marily by the properties of the electron source, the latter
typically is an interplay of initial bunch length, RF wave-
form and beam optics with nonzero time of flight terms
(sometimes referred to as momentum compaction).

To match the natural bandwidth of X-rays in the central
cone from an N -period undulator, the fractional rms energy
spread of the electron beam has to be ≤ (5N)−1 (a factor of
2 here comes from the beam energy squared dependence of
the emitted photon energy, and the additional factor is due
to FWHM to rms conversion of the radiation bandwidth
∼ 1/N ). This way spectral brightness in the fundamental
is guaranteed to increase proportionally with the number of
undulator periods. When linac-based accelerators reduce
the beam energy spread to values below those achievable
with storage rings, efficient use of very long undulators be-
comes possible, improving monochromaticity of X-rays.

The much shorter bunch length than that from storage
rings is thought to enable new areas of ultra-fast X-ray sci-
ence. Herein, we address longitudinal phase-space manip-
ulations feasible in an ERL and consider various options
for lattices and regimes of operation of such a light source.

The electron beam is created in a source [2], in which
the space charge forces create an effective randomization of
phase-space positions, so that we here assume a Gaussian
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beam in the longitudinal phase-space between the injector
system and the linac. In the Cornell project, beam energy is
planed to be 10 MeV at that region. The bunch length and
energy spread are planed to be σz0 = 0.64 mm and σδ0 =
10−3. An energy recovering linac will accelerate this beam
to 5 GeV. Magnetic lattice after the linac with adjustable
time of flight terms, together with an off-crest acceleration
of the beam, will then be used to reduce the bunch length
to the desired amount. We herein compute limits on the
achievable bunch length and provide analytical expressions
that describe longitudinal dynamics in an ERL.

ANALYTICAL EXPRESSIONS

Significant insight into the beam’s longitudinal phase-
space after the linac and the bunch compressor can be ob-
tained by investigating higher–order transfer maps. These
describe the change of the phase-space variables, δ (frac-
tional energy deviation from that of central ray) and z (dif-
ference of path lengths between a particle and that of cen-
tral particle respectively) by a Taylor series. We will indi-
cate phase-space coordinates between injector and linac by
an index 0, after the linac by an index 1, and after the bunch
compressor by an index 2. Retaining leading orders only,
one writes:

δ1 � E0

E1
δ0 + α1z0 +

α2

2!
z2
0 +

α3

3!
z3
0 + · · · . (1)

The first term, δ0, is due to the uncorrelated energy spread
after the injector, normalized by the full beam energy, αn

is partial derivative at the location of the central ray: an =
∂nδ1/∂zn

0 |z0=0. Injected beam is accelerated from energy
E0 to E1 according to E1 − E0 = Emax cos(ϕ + kRF z0),
i.e. coefficients αn are:

α2n−1 = (−1)n Emax

E1
k2n−1

RF sinϕ,

α2n = (−1)n Emax

E1
k2n

RF cos ϕ,

here Emax is the maximum energy gain in the linac, ϕ is
the off-crest phase, and kRF = 27 m−1 is the wave number
corresponding to the fundamental RF frequency. Note that
we have transformed the particle position z into a time of
flight term assuming that the velocity is c along the com-
plete linac. Assuming a Gaussian beam between injector
and linac with rms bunch length σz0 =

√
〈z2

0〉 of the in-
jected bunch and no initial energy-length correlation, the
rms energy spread σ2

δ1
= 〈∆δ2

1〉, with ∆δ1 = δ1 − 〈δ1〉,
and emittance ε2z1 = 〈z2

1〉〈∆δ2
1〉 − 〈z1∆δ1〉2 after the linac
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ε2z1 =
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)2
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α2
2

2
σ6

z0 + · · · .

The energy spread from the injector, E0
E1

σδ0 ≈ 2×10−6,
is extremely small and will be neglected here, σz0 = 0.64
mm corresponds to σ = 0.017 = 1◦ of the 1.3 GHz RF
phase or 2.1 ps. The off-crest RF-phase ϕ � 1. Thus, for
all practical cases of interest, energy spread and emittance
are estimated as

σ2
δ ≈ (σϕ)2 + (σ2/

√
2)2, (2)

ε ≈ σ3/
√

2,

here the bunch length and emittance without a subscript z

are given in units of the RF phase, i.e σ = kRF σz and
ε = kRF εz .

Bunch compression

After an achromat, i.e. when only purely chromatic
terms matter but transverse particle coordinates do not in-
fluence the time of flight, longitudinal phase-space trans-
form using TRANSPORT notations is written as:

z2 = z1 + R56δ1 + T566δ
2
1 + U5666δ

3
1 + · · · ,

δ2 = δ1 .
(3)

Inserting δ1 from equation (1) leads to the function
z2(z0, δ0). Ignoring the energy spread E0

E1
σδ0 due to the

injector leads to

z2 = (1 + R56α1)z0 + (T566α
2
1 + R56

α2

2
)z2

0

+ (U5666α
3
1 + T566α1α2 + R56

α3

6
)z3

0 + · · · .

Since the initial coordinates z0 and δ0 are distributed by a
Gaussian, the rms bunch length after the bunch compressor
σ2

z2
= 〈z2

2〉 − 〈z2〉2 evaluates to

σ2
z2

≈ (1 + R56α1)2σ2
z0 + 2(T566α

2
1 + R56

α2

2
)2σ4

z0

+6(1 + R56α1)(U5666α
3
1 + T566α1α2 + R56

α3

6
)σ4

z0. (4)

When the first and second order optics is chosen to min-
imize the bunch length, R56 = −1/α1 and T566 =
α2/(2α3

1), the final bunching is given by

σ2
z2 = 15(U5666α

3
1 +

3α2
2 − α1α3

6α2
1

)2σ6
z0 . (5)

After the third order bunch compression with U5666 =
(α1α3 − 3α2

2)/(6α5
1) the leading order term becomes

σ2
z2 = 96(V56666α

4
1 −

15α3
2 − 10α1α2α3 + α2

1α4

24α3
1

)2σ8
z0 .

(6)
It is instructive to estimate various terms in expressions

(4-6) in case of bunch compression to different order as-
suming typical ERL parameters, e.g. σ = 1◦, ϕ = 10◦.

The leading order in the initial energy spread σδ0 of the
rms bunch length after the bunch compressor is neglected
in equation (4) since it is very small. In case of linear
bunch compression, R56 = −1/α1, it only amounts to
R56

E0
E1

σδ0 ≈ 2 × 10−6/(kRF ϕ) = c · 1.4 fs. In case of
an ideally linear compressor, i.e. T566 = U5666 = 0, equa-
tion (4) is estimated to σz2 ≈ σ2/(

√
2kRF ϕ) = c · 150

fs. When the second order time of flight term is chosen
for second order bunch compression, equation (5) leads
to σz2 ≈

√
15σ3/(2kRF ϕ2) = c · 40 fs. Expression (5)

provides maximum compression for the parameters R56 ≈
k−1

RF /ϕ = 21 cm, T566 ≈ k−1
RF /(2ϕ3) = 3.4 m. The third

order bunch compression would be obtained for U5666 ≈
k−1

RF /(2ϕ5) = 113 m. Assuming V56666 = 0, equation (6)
then leads to σz2 ≈ 15σ4/(

√
6kRF ϕ3) = c · 13 fs.

Note that R56, T566, and U5666 should be of the same
sign. Although achieving this is very hard in a conven-
tional chicane bunch compressor [3], it can be done with
relatively small effort in the arc of a flexible storage ring
[4].

It is also straightforward to estimate tolerances for the
RF phase ϕ from (4). If the optics were adjusted to third
order bunch compression for a phase ϕ and the phase var-
ied by ∆ϕ, the bunch length would change by (∆σz2

σz0
)2 =

(∆ϕ
ϕ )2[1 + 8(σ

ϕ )2 + 2σ2] ≈ (∆ϕ
ϕ )2. Again, for the ex-

ample at hand, assuming that tolerable bunch lengthening
from RF phase errors is ∆σz2 = c ·50 fs, the allowed phase
jitter is estimated to be 0.2◦. Assuming state-of-the-art RF
phase stability of 0.1◦, the bunch length would be stable
up to 20 fs. Since a better stability seems unrealistic, this
suggests that a bunch compression of higher order than 2
will not lead to further improvements.

Energy Recovery

Energy recovery requires that the accelerated bunch
passes through the linac a second time with a phase shift of
π with respect to the first pass. This puts constraints on the
time of flight terms of the lattice. Ideally, the lattice should
be isochronous (including higher orders), so that the RF
waveform that the linac imposes in the longitudinal phase-
space is cancelled when the bunch passes through the linac
the second time.

For slight deviations from isochronicity, it is sufficient to
analyze the energy distribution at the location of the beam
dump, indicated by an index 3:

E3 = E0 + 2Emax sin[ϕ + kRF (z0 + ∆z
2 )] sin kRF

∆z
2 ,

z3 = z0 + ∆z.
(7)

Here ∆z = z2(z0, δ0) − z0 is a position shift of a particle
in the bunch that was initially at z0, which it experiences
due to nonzero time of flight terms of the recirculating arc.

If a lattice deviates significantly from the isochronous
condition, the two RF waveforms will not cancel out and
some parts of the bunch can have an energy deviation from
the mean energy that is relatively large compared to the
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ejection energy. This is especially severe for particles with
less energy than the mean, since they can be over-focused
and lost in the last section of linac. Such scenario can be
avoided by proper control of the time of flight terms of the
return arc.

An additional energy loss due to synchrotron radiation in
the recirculating arc has to be included in equation (7), ef-
fectively lowering the injection energy E0. In case when
kRF z0 � ϕ � 1, the condition for successful energy
recovery simplifies to −EmaxϕkRF ∆z � E0, e.g. for
Emax = 5 GeV, E0 = 10 MeV, and ϕ = 10◦, the shift ∆z
of any electron’s position in the bunch after the return arc
should be less than 0.4 mm. Note that the sign is important
here, since only particles with too little energy are lost in
the linac.

LATTICE OPTIONS

Optics of the Return Arc

The requirements for the optics of the return arc include:
adjustable time of flight terms, dispersion-free regions for
insertion devices, and low aberrations for emittance preser-
vation. Different approaches were considered such as a lat-
tice composed of identical achromats with adjustable R56,
etc. We favor a lattice design with non-periodic Twiss pa-
rameters, where negative dispersion of several meters is
generated at certain locations, as opposed to a more con-
ventional lattice made of compact achromatic cells with
intrinsically small dispersion. Our choice allows effec-
tive control of higher-order time of flight terms with only
a few moderately strong sextupoles for the whole return
arc. Such an approach has been used in the design of an
ERL in the CESR tunnel [4]. Furthermore, it was discov-
ered that the only important terms for clean transport of
the transverse phase-space for a beam with ERL param-
eters are the purely chromatic ones, thus, a lattice with
corrected second-order dispersion T166 and its derivative
T266 has sufficiently low aberrations to enable transport of
low emittance ERL beam for all practical cases with virtu-
ally no emittance growth due to nonlinearities in transverse
phase-space. Therefore, a second-order achromat where
both geometric and chromatic aberrations cancel to zero
is thought to be an unnecessary sophistication, especially
since its qualities are achieved at the expense of relatively
inflexible higher-order time of flight terms [3].

Linac optics

Various linac configurations are under consideration for
ERLs. These include single-pass straight-section RF struc-
tures, split linac arrangement, and multi-pass scenarios.
Computer simulations of beam break-up instability [5], [6]
suggest that a single-pass configuration is essential for a
high-current (∼ 100 mA) machine assuming state-of-the-
art damping of higher-order modes in superconducting RF
cavities, although for a lower current ERL a multi-pass
scheme seems very attractive.

A single-pass straight-section linac is thought to have an
advantage of containing a minimal number of bend sections
and reducing the danger of coherent synchrotron radiation
effects, i.e. the linac could be used to produce very short,
high brightness electron bunches, which might be of use
for certain applications (e.g. for SASE produced light). On
the other hand, the split linac option allows better control
of the transverse beam envelope due to smaller mismatch
of the accelerated and decelerated beam energies in each
of the linac sections. Furthermore, a split linac can allow
advanced longitudinal phase-space manipulations, such as
energy spread compression. It is clear from equation (2)
that the minimum energy spread is achieved for on-crest
running and scales as the bunch length squared. On the
other hand, longer bunches are preferable since they pro-
duce less higher–order mode power. Also, longer bunches
require less compression in the injector at low energies,
leading to better transverse emittances.

As an illustration, consider a linac split in two parts sepa-
rated by a transport line with adjustable time of flight terms.
The first section is operated with nonzero phase ϕ, which
generates a correlated energy spread. One then uses this
spread to induce a positive quadratic term in δ(z). The sec-
ond section runs with a phase of −ϕ removing both the lin-
ear and quadratic correlation and leading to a small energy
spread after the second linac section. The optimum condi-
tion for the transport line separating the two linac parts in
this case is given by R56 = 0, T566 = α2/α3

1 ≈ k−1
RF /ϕ3

and U5666 = 0. The remaining leading order in the en-
ergy spread for this case, and with V56666 = 0, becomes

σδ1 ≈ 5
√

3
2

σ4

ϕ2 . E.g. for a bunch length of σ = 1.5◦ and

φ = 10◦, one obtains σδ1 = 9 × 10−5. For longer bunches
the remaining energy spread would quickly become worse.
Also, the RF tolerances set a limit to the smallest energy
spread achievable with this scheme. If there is a mismatch
∆ϕ between the phases of the two sections, the energy
spread is limited to σ |∆ϕ| /2. Thus, to preserve the small
energy spread in the given example, the phase mismatch
∆ϕ has to be ∆ϕ < 0.4◦.
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