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Abstract distribution can be approximated by an expansion in terms
of the retardation. The use of the PIC method provides a
&mooth distribution constructed on a mesh in configuration

ace so that the expansion of the retarded radiation field
an be calculated numerically on the mesh with a desired

o . ) ccuracy. With this method, the retarded radiation field can
radiation interaction can be calculated self-cons@entlz y

thout ina the hist f the bunch particle di e calculated self-consistently without a need of memoriz-
without memorizing the history ot the bunch particie IS'ing the history of the distribution during a beam tracking.
tribution during a beam tracking.

In a simulation of the CSR problem, the radiation field
can be calculated either directly in the form of the Lorentz
INTRODUCTION force or indirectly through the Liénard-Wiechert potahti
) ) o ) in configuration or frequency space. The direct force cal-
In the study of collective particle-field interactions, thegjation is faster but it is more prone to the numerical sin-
chief of difficulties is that the calculation of the field ré-gularity of the radiation field as the radiation from an uitra
quires a knowledge of particle distribution while the distr r¢ativistic charge is concentrated inside a radiationecon
bution itself is perturbed by the field. Currently, the mos}yith an angular width of~ ~~!. This perturbative-PIC
effective numerical method for a self-consistent treatmen,qthod can be used for both the direct and indirect calcu-
of such a collective interaction is the particle-in-celld® |ation of the radiation field. Note that the use of the PIC

method in which the time evolution of the particle distribunethod can significantly reduce the numerical singularity
tion is calculated on a mesh in configuration space by using ine radiation field.

a large number of macroparticles [1]. For the interaction
between an ultra short bunch and its coherent synchrotrogy s o | CLE-RADIATION INTERACTION
radiation (CSR), however, one additional difficulty for a
self-consistent treatment is the retardation of the ramhat  Consider a bunch that moves along a plane circular de-
field as the particle-radiation interaction involves arg¢éal  sign orbit of radiusRk with a constant speed af), where
bunch particle distribution. A direct use of the PIC methot, = v /c ~ 1. Let X (t) = X.(s)+Z(s) be the global co-
is very inefficient, if not impossible, because with a reaerdinate of a bunch particle in the lab frame, where vyt
sonable density of the mesh and a reasonable numberigfthe independent (“time”) variableY.(s) is the global
macroparticles, keeping the history of the particle districoordinate of the bunch centroid along the design orbit,
bution in computer memories during a beam tracking iand¥ = (x,y, z) is the coordinate of the particle respect
technically impractical (expect maybe in the case of a venp the bunch centroid where, y, and z are the horizon-
short beam path.) tal, vertical, and longitudinal coordinates, respectiveket

To overcome the difficulty of the retardation in a self-f(X, P, s) be the bunch particle distribution in the phase
consistent treatment of the CSR problem, we have develpace of the global coordinate. The Lorentz force on a test
oped a perturbative-PIC method based on a perturbatiparticle atX due to the synchrotron radiation from a bunch
expansion of the retarded radiation field. For the perturbar the vector potential of the radiation field At can be
tion expansion of the radiation field, we utilize the facttthacalculated from
the time dependence of a bunch particle distribution has oo
two significantly different time scales. A fast time scale of 7 _ / G(X — X1, 8,75) f(X1, Py, s — 7,) dX1 dP,
the distribution is related to the linear dynamics of a bunch
as its centroid moves along the lattice and its beam sizes = (1)

distribution is of the slow beam-size growth due to nony; (X,s) (for the direct calculation of the force) or the
linear perturbations. The retardation on the fast timeesca| janard-wiechert potential (for the calculation of the-po
can be eliminated from the distribution analytically SinCgyia) of the electromagnetic field radiated from a charge
the linear dynamics is known. As the retardation of the M35t (X, s1) in the lab frame, and, = s —s; = fo| X — X1 |
diation is usually much shorter than the slow time scale qf . 7retardation Note th'ai irf general, could also be a
the distribution, the retardation on the slow time scaléen t function of B, of the particle that radiates the fieldsatand
*Work supported by the US Department of Energy under Grant N2 P Of the test particle at. Fo_r_an Ultra'relaUV'_St'C_)b_eam:
DE-FG02-04ER41288. the dependence of the velocities or accelerations iran

A self-consistent simulation method is developed for th
study of coherent synchrotron radiation effects by using
perturbation expansion of retarded radiation field and th
particle-in-cell method. With this method, the particle-




be well approximated by the velocity or acceleration of thevhere

bunch centroid motion and, therefor@,does not depend o0 o

on Pl.(.)rP in Eq: (D). Thellntegral in EQ. (1) can thu; bg Fo— 1 / él((ﬁ 7' 1) (—7s)" 0 P(qn,s)d(j/ (5)

simplified as an integral with the bunch particle density in n! ds

configuration space. e

Note that the convergence of the expansion in Eq. (4) is

. usually better than the expansion of the distribution in Eq.
The fast time scale irf (X, P, s) is of the linear beam (3) since the integration in Eq. (5) smoothes the time evolu-

dynamics that includes the motion of the bunch cention of a numerically constructed distribution in a PIC sim-

troid and the linear variation of the beam size aroundjation. If the time step in the simulation is small enough,

an accelerator. Since the linear dynamics is known, theeping the first-order term is sufficient, then
retardation of the fast time scale (X, P1,s — 7s)

.. . . . 2
can be eliminated by transferring to the normalized vari- =~ _ . = S Tmax 90
ables. Let? = (\/B:(s)q1, \/By(s) g2, ¢3) and &y = Fal@,8) = Fol@ o) + Fal(G0) + O ( o 0s? ©)

0s?
(\/61(8 —Ts) 415 \/ﬁy(s —7s) ¢5, q3), where,(s) and ~ ]
f3,(s) are beta functions with knowsrdependence. Since whereF; can be evaluated with the standard PIC method.
the transformation from)?h 131) to (¢',p") is symplectic, To evaluateF’, one need8p/ds that could be obtained di-

wherep” is the momentum conjugate 0, the integral in  rectly on the mesh with a numerical differentiation during a
Eq. (1) simply becomes PIC simulation. The direct calculation 6p/0s, however,

- requires a memorization @f for a couple of time steps in
Lo = ., N the simulation and could be numerically unstable at some
F(q,s) = / G1(q.¢"7s)p(q", s = 75)dd" (2) mesh points if the time evolution of the numerically con-
—o0 structed distribution is not smooth enough. In fact, it is
whereG, @ 7) = é()f _ % 5,7s), naot iea[ly necessary to calculae/ds directly. Becagse
G1(q,q’, 7s) does not depends on the momerita/ds in
x Eq. (5) can be converted into the derivatives of the un-
(7' s — 1) = / (@, p' s — 1) dp’, perturbed Hamiltonian (Hamiltonian of the linear motion)
oo with respect to phase-space variables and can thus be ob-

I _ o tained in a closed form. For this purpose, we start with the
and f (g, p; s) is the bunch particle distribution in the nor-| i, ,ille’s equation for the bunch particle distribution,
malized phase space. Note thatis a function of(g, ¢”)
and does not depend g#. Without any nonlinearity of _ dp Of dq of )
and if the bunch matches with the linear lattice initially, Js ds 0p ds 0Of
dp(q,s)/ds = 0. With nonlinear perturbations such as
CSR,p(q, s) may weakly depend anexplicitly and the re-
tardation of the weak explicik-dependence gf(q, s — 5)
can be treated perturbatively. If a bunch is mismatched Wi&

the linear lattice, as long as the oscillation of the bunah du

a. Elimination of Fast Time Dependence of f(X, P, s)

In beam tracking, the Lorenz force from the synchrotron
radiation can be approximated as momentum kicks applied
n beam particles successively along the beam path. With
is kick approximation, the equation of motion is

to the mismatch is not significant during the retardatioa, th dqg 0H)
perturbative treatment of the retardation fdg, s — ;) is ds op
still valid. di OH., .
_ . ) = CO N Ral@s)ds—si)  (®
b. Expansion of Explicit 7s-Dependence of p(q, s — 75) ds aq p

~ Consider the situation that the emittance growthynere f, is the Hamiltonian for the motion without the
is small in the time scale of the retardation, i.erqgiation field, K is the kick of the radiation fieldFis,
((Tmax/P)(9p/0s)) ~ (Tmax/)(do/ds) << 1, where anq g, is the location of the radiation kick on the beam
Tmax = Max(7;) ando is the r.m.s. beam emittance. Thepath. With an ultra-relativistic beanfy, does not depend
retardation of the explicié-dependence of(¢; s — 7) can o 7 explicitly and the symplectic condition is preserved in
be expanded as Eq. (8). Substituting Eq. (8) into Eq. (7) and integrating
(. over momenta on the both sides of Eqg. (7) yields
@5 —m) = S LLADE) () &0y

o s o 0 <8H0>
2

-2 . (=0 9
s 07 \ op ©)

Note that this expansion preserves the normalization con-
dition of p. The integral in Eq. (2) can then be calculate

; Qvhere (---)~ is the average over the beam in the mo-
through the expansion as b

mentum space. Since the Hamiltonians for other nonlin-
ﬁsa(tﬁ 5) = Z ﬁn((f, s) (4) ear perturbations (_joes_ not depe_nd on th(_e m_omenta nei-
= ther, only the Hamiltonian of the linear motion is relevant



to 9H,/0p'anddp/ds does not depend on nonlinear perthe macroparticle, respectively. Aftp(q, s) and(p); at

turbations explicitly. With the unperturbed Hamiltoniang|| mesh points are knowt}, and £ are first calculated at
of a linear lattice for an ultra-relativistic beam, one hag|| mesh points with numerical integrations of Eq. (5) with
(0Ho/0p1)5 = (p1)5/Bx, (OHo/Op2)5 = (p2)5/By»  n =0andEq. (10). The radiation field is then interpolated
and(0Ho/0ps) ;= —[1+ ﬁi/qu/R] p- Note thaf( /) ; = to positions of every macroparticles for beam tracking. One
0 if a bunch is symmetric i. With nonlinear perturba- advantage of the PIC calculation with a direct integration
tions, a bunch usually cannot maintain such a mirror syn®f the field is the possibility to use a relatively small mesh.
metry in each dimension of the momentum space and, fsince usually almost all beam particles are inside a phase-
general,(p); # 0 even in the case that the bunch is ini-space region of three to four r.m.s. beam sizes, a mesh that
tially symmetric. In the PIC simulatior(,ﬁ)ﬁ as functions extends to six r.m.s. beam sizes and is dynamical adapted
of ¢ can be constructed on the mesh using a similar compte beam-size growth is usually larger enough for the PIC
tational procedure as that fpfg, s). Substituting Eq. (9) simulation.
into F7 in Eq. (5) and using integration by parts yields FINAL REMARKS

3

2 [ = OH, ~ Because of the difficulty in treating the retardation nu-
(g, s) ==Y / gi(q,q/,TS)< 0> dq’ (10) u ifficulty i ing ion nu
i=1_"

Op; 7 merically, most simulation codes currently developed for

the CSR problem have adapted following approaches [2]:

where (a) non-self-consistent, (b) equivalently keeping onlg th
Oth-order termFy in Eq. (4) for the radiation field, (c) di-
. ~ 9G,\ or. oG, rect tracking of a limited number of macroparticles and the
Gi(q.q",7ms) = | G1+ . ) oq Ts g particle-radiation interaction is calculated with pagito-

particle individually, and (d) solving the Vlasov-Maxwell
equation in phase space. For the approach (b), it is not
clear how important the retardation of the high-order vari-
ation of the distribution due to CSR. For the approach (c),
the calculation of a collective interaction with partidtz-
particle individually has been known to be not reliable due
to a nonsmooth field. For the approach (d), the challenge is
ow to solve the Vlasov-Maxwell equation with a reason-
able efficiency for the case of along beam path such asina
storage ring. The perturbative-PIC method presented here
provides an order-by-order approach to examine the impor-
tance of the retardation to the collective CSR effects, espe
cially the instabilities induced by CSR. It should be noted
that our current approach of the perturbative-PIC method

o neglects the effect of beam pipe on the radiation field and,
PIC METHOD FOR EVALUATING Fsg therefore, can only be applied to the unshielded CSR prob-

In simulation, a particle bunch is represented by a Iarglgm'

number of macroparticles in phase space. The initial par- 10 check our perturbatice-PIC code, we have calculate
the radiation field of a one-dimensional Gaussian bunch (a

ticle distribution can be any distribution but is usually" h - . !
a Gaussian. During the tracking, the synchrotron radline charge) and the result is consistent with the analytic
Due to a limited space here, the numerical

ation field is calculated with a numerically constructed!ution [3]. D
self-consistent bunch particle distribution by using the p result will be discussed elsewhere.
method. In the traditional PIC simulation, the particle den

sity p(q. s) = (1) is constructed on a mesh in configura- ACKNOWLEDGMENTS
tion space with the macroparticles by using a cloud-in-cell
technique [1]. Similarly(p); as a function off is also

constructed on the mesh for the evaluatiorf@f For ex-
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Note thatél is a function of(¢, ¢’, 75) andr is a function
of (¢,¢"). Theq’-dependence of; can be solved from

7o = Bol Xe(s) — Xe(s — 75) + T — T4 (11)

either numerically during the tracking or approximately i
a closed form. The closed form 8t /9¢’ can be obtained
by taking the derivative of both sides of Eq. (11) with re
spect ta7’. As the closed forms (Iffl and@- are available,
the quadratures foF, in Eq. (5) andF; in Eq. (10) can
be evaluated aftes(q. s) and(p’); are constructed on the
mesh during a PIC simulation.
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