ERLO7 41st Advanced ICFA Beam Dynamics Workshop on Energy Recovery Linacs Daresbury Laboratory, UK, May 21-25, 2007

Highlights of the ERL07 Workshop

Lia Merminga, Matt Poelker, Bob Rimmer, Kevin Jordan

Jefferson Laboratory

2nd Workshop on Energy Recovery Linacs

May 21-25, 2007 Daresbury Laboratory, UK

Plenary Program

- Welcome and Goals of Workshop M. Poole (ASTeC)/S. Chattopadhyay (Cockcroft)
- Operating ERL-Based FELs and Future Upgrades L. Merminga (JLAB)
- Future ERL-Based FELs J. Clarke (ASTeC)
- ERLs as Hard X-ray Sources G. Hoffstaetter (Cornell University)
- ERLs in HENP V. Litvinenko (BNL)
- High Current Research and Development ERLs I. Ben-Zvi (BNL)
- ERL Prototype at Daresbury S. Smith (ASTeC) Daresbury
- New Developments In Injectors J. Lewellen (ANL)
- High Current Superconducting RF and RF Control T. Grimm (Niowave/MSU)
- Synchronization G. Hirst (STFC)
- Diagnostics K. Jordan (JLAB)
- Drive Lasers for Photoinjectors I.Will (MBI)

Working Groups

Working Group 1: Electron Guns and Injector Designs A. Burrill (BNL), Matt Poelker (JLab)

Working Group 2: Optics and Beam Transport R. Hajima (JAEA), Hywel Owen (DL)

Working Group 3: Superconducting RF and RF Control T. Smith (Stanford University), Bob Rimmer (JLab)

Working Group 4: Synchronization and Diagnostics/Instrumentation K. Jordan (JLAB)

Daresbury Campus

Cockcroft Institute Building

PP∙\RC

25 2007

ASTeC

Merminga, ERL2007, May 21-25 2007

CCLRC

Demonstrator Project - ERLP Layout

Thomas Jefferson National Accelerator Facility

ERLP Status

ERLP as an Accelerator Test Facility

Novel form of FFAG – CONFORM project funded from April 2007

EMMA = 20 MeV demonstrator

£5.6M (£3.8M capital £1.8M staff) Duration 3.5 years (2.5 to beam)

Workshop Planning

- Build on success of 1st International Workshop at JLab (March 2005)
- Dates agreed at EPAC06 (DIPAC not known)
- ICFA umbrella includes JACOW decision Open Access publishing
- Thanks to Sponsors: STFC CI e2v JLab APS
- Valuable advice especially
 Ilan Ben-Zvi, Georg Hoffstaetter, Lia Merminga
- Please help your Convenors in the Working Group sessions
- 105 registered (host + 61)

Jefferson Lab

Workshop Goals

- Review state of art ERL developments
- Understand proposed project demands
- Examine R&D challenges ERLs and associated features
- Summarise future development priorities
- Recommend necessary steps physics and technology
- Strengthen international collaborations

The Jefferson Lab IR FEL Upgrade

Energy recovered up to 9.1 mA at 150 MeV

*Quantities are rms

JAEA ERL Upgrade since 2004

- 1. Doubled bunch repetition rate of the gun grid pulser to 20.8 MHz (10mA)
- 2. Increase of RF sources for the injector SCAs from 8 kW to 50kW Improvement of low-level RF controller
- 3. Doubled energy acceptance of the return arc from 7% to 15%

N. Nishimori et al., APAC2004, 625 (2004) A grid pulser developed at BINP is used.

Courtesy R. Hajima

Jefferson Lab

R. Nagai et al., FEL2006, 312 (2006).

Thomas Jefferson National Accelerator Facility

7.2 m

10 mA beam

Two 50 kW IOT RF sources are used.

M. Sawamura et al., EPAC2004, 1723 (2004).

The Novosibirsk High Power THz FEL

Energy recovered highest average current to date: 20 mA at 1.7 nC per bunch

RF-Cavities Dending Magnets Quadrupoles Solenoids

	May 2005	Plans
RF frequency, MHz	180	180
Bunch repetition rate, MHz	11.2	90
Maximum average current, mA	20	150
Maximum electron energy, MeV	12	14
Normalized beam emittance, mm*mrad	30	15
Electron bunch length in FEL, ns	0.07	0.1
Peak current in FEL, A	10	20

Thomas Jefferson National Accelerator Facility

On-going R&D in Operating ERL-FELs

...includes:

- High order transport measurements
- BBU observation, characterization, and suppression
- RF control tests at high Q_L
- Beam loss measurements and control
- Resistive wall wakefield effects
- LSC and CSR effects
- Transverse and longitudinal acceptance of an ERL
- High FEL extraction efficiency studies
- ERL Diagnostics development

BrightLight: Palletizable 100 kW FEL Driver

- ERL driven 1-1.6 mm 100 kW FEL
- Considerable operational flexibility, but relatively compact
- Based on JLab 750 MHz "1 Amp Cryomodule" (in prototype)
- Supports either cavity oscillator (illustrated) or amplifier FEL

I	100 mA (75 MHz X 1.4 nC or 750 MHz X 135 pC)
E _{inj/full/dump}	5, 100, 4 MeV
f _{RF}	748.5 MHz
h _{FEL}	1%
P _e - _{beam/FEL}	10 MW/100 kW

Courtesy: D. Douglas

"MADMAN" – compact transportable system

Courtesy: D. Douglas

- ERL driver for high power THz & FEL sources
- Extremely compact with low parts count; "turn-key" operation
- Based on JLab 750 MHz "1 A Cryomodule" (in prototype)
- Supports either cavity oscillator (illustrated) or amplifier FEL
- Uses "direct" injection/extraction (no merger)

I	100 mA+
E _{inj/full/dump}	2, 100, 2 MeV
f _{RF}	748.5 MHz
h _{FEL}	>1%
P _e - _{beam/FEL}	10 MW+/100 kW+

Future ERL-based FEL Projects

- NHMFL
- KAERI
- PKU-ERL-FEL
- ERLP
- Arc-en-Ciel
- 4GLS

Apologies to any project that has not been mentioned !

NHMFL's "Big Light" Source - Conceptual View

Thanks to George Neil (Jlab); apologies to Dresden for (mis)use of their images.

PKU-ERL-FEL

Draft design of PKU-ERL-FEL facility

Status of KAERI Electron Accelerator Facility

The ERLP IR-FEL

Three phases project

- ARC-EN-CIEL phase 1 :

Linear accelerator : 220 MeV (or 330 MeV), low energy spread, low emittance femtosecond HGHG sources : 100-10 nm, high brilliance and coherence

- ARC-EN-CIEL phase 2 :

Linear accelerator : 1 GeV HGHG sources : down to 1 nm

- ARC-EN-CIEL phase 3 :

Jefferisonulialarie-Emmanuelle SOLEIL

The 4GLS Concept

Cornell / KEK / JAEA / APS ERLs

Challenges for x-ray ERLs

- Production of low emittances + limiting emittance growth (WG1 / WG2)
 - Limit coupler kicks / cavity misalignments
 - Limit optics errors and adjust fields to radiated energy
 - Low emittance growth optics similar to light sources
- Limit energy spread after deceleration, e.g. 5GeV to 10MeV (WG2)
 - Accurate time of flight correction, including sextupoles
 - Limit energy spread from wake fields
 - Limit energy spread from intra beam scattering (IBS) and rest gas scattering
 - Limit energy spread from incoherent / coherent synchrotron radiation (ISR / CSR)
- Manage user community
 - Running with different modes, bunch patterns, currents
- Beam stabilization as stable as rings (WG4)
 - Limit beam breakup instability (BBU)
 - Limit beam jitter by feedback
 - Tolerances
- Beam loss concerns
 - Beam loss from IBS / Tourschek
 - Rest gas scattering
 - Disturbance from ions / ion removal
 - Halo development
- Jefferson Lab RF challenges (Monas) Jefferson National Accelerator Facility

E-cooler: 2 passes ERL layout

- 1. SRF Gun,
- 2. Injection merger line
- SRF Linac two 5-cell cavities and 3rd harmonic cavity
- 4, 4'. 180° achromatic turns

- 5, 6. Transport lines to and from RHIC,
- 7. Ejection line and beam dump
- 8. Short-cut for independent run of the ERL.

54 MeV, 5 nC at 9.4 MHz. RF 703.75 MHz. Gun 5 MeV

Second objective: ERL based eRHIC

Conclusions

- Bright future for ERL in High Energy and Nuclear Physics: from supporting roles to head-on collisions
- High energy electron cooling of hadrons (both traditional and stochastic) is one of the most promising applications for ERLs: example ERL-based e-Cooler for RHIC @ BNL
- High energy, high luminosity ERL-based electron-ion and polarized electron-proton collider is the most promising approach : example ERL-based electron-ion collider eRHIC @ BNL
- ERLs can play important role in generating very intense beams of γ-rays for many applications in HENP: producing beams of rare isotopes, polarized positrons or transmutation of nuclear waste.
- R&D on high current, high brightness ERL address many issues required for such applications: <u>R&D ERL at BNL - talk this afternoon</u> <u>by Ilan Ben Zvi</u>

Vladimir N. Litvinenko, ERL 2007 workshop, Daresbury Lab, May 21, 2007

Thomas Jefferson National Accelerator Facility

32

The BNL High-Current R&D ERL

- Aimed at pushing the limits for beam current: 0.5 amperes
- Testing of novel components and techniques:
 - Superconducting electron gun
 - Diamond amplified photocathode
 - Z-bend ERL beam merging
 - High-current SRF cavity at 703.75 MHz
 - Diagnostics and more.
- Working with industry (AES) on many aspects

Some of the installed equipment

Thomas Jefferson National Accelerator Facility

Diamond amplified photocathode

Courtesy Xiangyun Chang. See talk by Triveni Rao.

Gain measured in emission into vacuum

Thomas Jefferson National Accelerator Facility

ERLP Accelerator Layout

ERLP Accelerator installation

Thomas Jefferson National Accelerator Facility

ERLP Ongoing work

- Baking of injector
- High gradient tests of linac module
- Commissioning of booster RF system for acceptance tests
- Cryo system optimisation with RF
- Commissioning of beam transport system systems
 - Controls
 - Diagnostics
 - Machine protection system

ERLP Future Plans

Confirmation linac gradient this week Confirmation booster gradient end August Gun & diag line studies finished mid August early Sept Booster repositioned Beam through booster Oct Beam through the linac end Nov Second 2008 Compton backscatter phase 1 Install wiggler Energy recovery from FEL-disrupted beam Produce output from the FEL

Summary of Working Group 2

Thomas Jefferson National Accelerator Facility

ERLO7

WG2 issues

- classical but important
 - linear and nonlinear optics
 - emittance preservation
 - bunch compression
 - effects of CSR
 - BBU
- unresolved or ERL-specific
 - trapped ions
 - long-range resistive wall
 - energy spread after deceleration
 - path length correction
 - beam loss: sources and management
- issues raised from recent progress of components
 - cavities for high-average current →multi-turn operation
 - − ultra-high-brightness electron sources \rightarrow precise simulation technique

Lattice and optics designs of the planned test ERL in Japan

Planned test ERL at KEK Counter Hall.

Shogo Sakanaka Principal parameters.

Beam energy	~ 60 MeV (160-200 MeV)
Injection energy	5 MeV (10-15 MeV)
Beam current	10 mA (100 mA)
Normalized emittance	1 mm·mrad (0.1 mm·mrad)
Rms bunch length	Usual mode $: \sigma_r = 1-2 \text{ ps}$ Short bunch mode $: \sigma_r \sim 100 \text{ fs}$?

CRYOMODULE

Thomas Jefferson National Accelerator Facility

CHICANE

MERGER

BM

BΜ

6

ΒM

emittance preservation

always critical, many talks involve this subject.

V. Litvinenko

Miho Shimada

multi-variants optimization

JSA

Powerful tool to design ERL injectors

- minimizing transverse & longitudinal emittance during capture, compression, acceleration of an electron bunch from zero-energy to several MeV.
- Quite efficient with evolutionary algorithm (GA).
- Don't be ignorant about physics behind.

ERL07

- Touschek scattering (single Coulomb scattering) is expected to be a significant source of beam loss in ERLs due to low emittance and short bunches
- In APS ring, we want loss current below 170 pA, due to thickness of existing shielding
- Using Piwinski's formalism, we can estimate the required energy aperture needed to keep the loss rate below a specified level
 - For ERL beam, need energy acceptance of +/- 1% in APS ring
 - +/- 2% acceptance would give about 11 pA loss current
- We optimized the energy acceptance by tracking with parallel version of elegant
 - Insert single-scattering elements after each magnet with +/- 2% energy deviation
 - Adjust sextupoles until transmission through system is optimized
 - Resulting energy acceptance of APS portion is +/- 5%
 - Losses in external turn-around arc reduced 23-fold
- We also modeled the use of perfect collimators at a few locations and found them effective in reducing losses in sensitive areas
- Plan to add a physically correct model of Touschek scattering to elegant to give more quantitative results.

lons in ERLs

Ion trapping may cause large betatron tune-shifts or fast ion instabilities in ERLs.

G. Hoffstaetter

Ion clearing electrodes:

- A set of electrodes that draw ions out of the beam potential.
- They have to be located at the minimums of the electron beam, where the ions would otherwise accumulate.
- The damage from this density can be made acceptably small by spacing clearing electrodes close enough together (about 10m).

Effect of bunch-gaps on ion trapping

S. Sakanaka

ERLO7

shield relaxes CSR

G. Hoffstaetter

CSR in Cornell turn around loop for 2ps bunch

Coherent radiation:

	mode A	mode B	mode C	1nC	
Emittance grwoth	1%	0.2%	1%		
Energy spread growth	4 10 -5	10-6 (1%		→ difficult to decelerate

Resistive-Wall Beam Breakup

Jefferson Lab

RWBBU can be a serious problem in ERLs and should be fully understood. Norio Nakamura

- Development of simulation program ← limitations of asymptotic expression
- Application of simulation program to the test ERL in Japan.
- RWBBU grows with t1/2 in its early stage.
- Orbit distortion due to RW wake is ~ 1% (max.) of injection error at t=77 μs.
- A small-gap ID duct significantly increases orbit distortion.
- ID focusing suppresses orbit distortion, but it is changeable.
- Orbit correction and copper-coating of ID duct will help reducing the RW wake.
- Discussion & Homework
- Effect of resistive pipe thickness on wake-function
- Consistency with real machine (e.g. J-Lab) operation

ERL07

Computer Codes

We all rely on computer codes – ASTRA, PARMELA, TRANSPORT, MAFIA elegant is one of the most utility one for ERL design studies.

M. Borland Para

Parallelization and Other New Features in elegant

- Review of elegant
 - Tool-based approach using self-describing files and a generic toolkit of programs ("SDDS") for pre- and post-processing
 - Basic element types include single particle dynamics, timedependent elements, and collective effects
- Parallelization strategy allows gradual parallelization
 - Necessitated by on-going development of serial version
 - Allows use of parallel features during development effort
 - Program automatically switches between parallel and serial mode
- Other new features (last three years) include deflecting cavities, fast chromatic matrix tracking, coupled lattice functions,
- Accelerator physics toolkit cooperates with elegant for lifetime, undulator, and related computations
- Development plan includes parallelization of longitudinal space charge, Touschek scattering, true multibunch simulation for BBU, electron cloud, and ion effects.

Photon Performance of X-FEL-O

Wavelength around 1-Å, or 10 keV

Per pulse

- Pulse length: 2ps (rms)
- Pulse energy: 0.1 μ J, or 10⁹ photons

Full transverse coherence

Full temporal coherence

 $\Box \Delta v/v=1-2 \ 10^{-6}$; h $\Delta v=10 \ meV$

Rep rate 1 MHz (one optical pulse stored in cavity) or higher limited by crystal, 100MHz?

- Average brightness 10^{28} ($\rightarrow 10^{30}$) #photons/(mm-mr)²(0.1%BW)

Photon performance complementary to SASE---higher coherence but less raw power

Very much work in progress – just starting.

Purpose of the exercise:

- Identify opportunities for international collaboration avoid unnecessa duplication of limited resources.
- Identify existing test facilities and maximize/optimize their use for ERL studies.
- Identify topics that are not addressed in existing or planned R&D facili
- Identify new facilities needed to address these topics.

- 1. Top level users requirements (e.g. X-ray energy, X-ray flux, X-ray spectral brightness, pulse repetition, ion cooling rate...)
- 2. Top-Level Accelerator/Beam Parameters (e.g. Energy, current, bunch length, bunch repetition, emittances, energy spread, ...)
- 3. Design choices
 - **RF** frequency choice 3.1
 - **Bunch structure/patterns** 3.2
 - 3.3 Lavout
 - 3.3.1 Single pass
 - [JLab FEL, BNL R&D ERL Feb 2009, ERLP 2008, BINP, JAEA]
 - 3.3.2 Multi-pass

[BINP 2008, CEBAF-Multipass ER, induce BBU?]

3.3.3 Reverse-direction ERL

4. Beam Dynamics: Theory, Design, Simulations, Experimental validation of codes – Review of co

- 4.1 **RF** focusing model development/validation [JLab FEL]
- SC dynamics / validation incl. sensitivity studies 4.2
- SC/CSR model development / validation [merger] 4.3 [JLab FEL, BNL ERL, APS, SLAC-LCLS, Cornell ERL, PITZ]
- **BBU code validation incl. multipass** 4.4
 - 4.4.1 Suppression
- 4.5 Halo: Model development/validation [JLAB FEL, CEBAF, BNL ERL, Cornell, PITZ – APS Model development]
- Ions: Model development/Validation/Cure 4.6 [JLab FEL, APS, Cornell ERL (2008), BNL, CESR: Fast ion instabilities]
- **CSR:** Model extension/validation 4.7
- 4.8 **OBBU:** Model development/validation/Suppression
- 4.9 **Impedance budget**
- 4.10 Wakefield effects (incl. RWBBU: Validation) [very short bunches]
- 4.11 Lattice optics corrections – tuning, non-linear corrections, sensitivity
- 4.12

S2E Self-consistent simulations Thomas Jefferson National Accelerator Facility

1. Technology

1.1 **Injector – One-pass systems?** 1.1.1 Energy choice – energy ratio 1.1.2 Polarization [JLab, MIT] 1.1.3 Guns 1.1.3.1 DC [Cornell, 4GLS, Jlab, JAEA] 1.1.3.2 SRF [BNL, FZD] 1.1.3.3 RF [Los Alamos] **Cathode quantum efficiency and lifetime Cathode material** Laser - Pulse shaping **Rep** rate 1.1.4 Injector SRF 1.1.4.1 Cavity shape /CM 1.1.4.2 Tuners 1.1.4.3 High power couplers [for 1.3 GHz] **Cornell. BNL.** 1.1.4.4 HOM couplers/absorbers Cornell, BNL, Daresbury, JLab 1.1.4.5 RF Power sources **1.1.4.6** Cryostat [New system development] 1.1.5 Dump design

1.1 Linac and return loop Technology
1.1.1 SRF cavities/CMs
5.2.2. Q ₀ at field
Cornell, ANL
5.2.3. Cavity shape
5.2.4 HOM couplers/absorbers
Cornell, BNL, Daresbury
5.2.5. RF control
[Single vs. multiple cavities per klystron, Ferro-electric shifters]
[JLab, BNL, APS]
1.1.2 Cryo
1.1.2.1 Optimum T
JLab, ANL
1.1.2.2 System optimization
1.1.3 SRF Integration
1.2 Global systems
1.2.1 Diagnostics –
Cornell, APS, BNL, JLab, ERLP
1.2.2 Synchronization
Cornell, ERLP
1.2.3 Stability/Feedback
Transverse
Energy
Energy spread
1.2.4 Collimation
1.2.5 Reliability
[ERLP/Cornell/LBNL, JLab FEL, ILC]
1.2.6 Radiation protection
1.2.7 Machine protection
Users/Light
2.1 Undulators
2.2 Photon diagnostics

- 2.3 Optical cavity/mirrors
- 3. Global optimization [risk/cost/performance]

2.

