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Here we will derive the general theory of the beam-breakup (BBU) instability in recirculating linear
accelerators with coupled beam optics and with polarized higher-order dipole modes. The bunches do not
have to be at the same radio-frequency phase during each recirculation turn. This is important for the
description of energy recovery linacs (ERLs) where beam currents become very large and coupled optics
are used on purpose to increase the threshold current. This theory can be used for the analysis of phase
errors of recirculated bunches, and of errors in the optical coupling arrangement. It is shown how the
threshold current for a given linac can be computed and a remarkable agreement with tracking data is
demonstrated. General formulas are then analyzed for several analytically solvable problems: (a) Why can
different higher order modes (HOM) in one cavity couple and why can they then not be considered
individually, even when their frequencies are separated by much more than the resonance widths of the
HOMs? For the Cornell ERL as an example, it is noted that optimum advantage is taken of coupled optics
when the cavities are designed with an x-y HOM frequency splitting of above 50 MHz. The simulated
threshold current is then far above the design current of this accelerator. To justify that the simulation can
represent an actual accelerator, we simulate cavities with 1 to 8 modes and show that using a limited
number of modes is reasonable. (b) How does the x-y coupling in the particle optics determine when
modes can be considered separately? (c) How much of an increase in threshold current can be obtained by
coupled optics and why does the threshold current for polarized modes diminish roughly with the square
root of the HOMs’ quality factors. Because of this square root scaling, polarized modes with coupled
optics increase the threshold current more effectively for cavities that have rather large HOM quality
factors, e.g. those without very elaborate HOM absorbers. (d) How does multiple-turn recirculation
interfere with the threshold improvements obtained with a coupled optics? Furthermore, the orbit
deviations produced by cavity misalignments are also generalized to coupled optics. It is shown that
the BBU instability always occurs before the orbit excursion becomes very large.
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I. INTRODUCTION

In several applications of linear accelerators, the charged
particle beam passes through the accelerating structures
more than once after being led back to the entrance of the
linac by a return loop. By this method the linac can either
add energy to electrons several times, or it can recapture
the energy of high energy electrons after they have already
been used for experiments. The former technique is re-
ferred to as recirculating linac, the latter as energy recovery
linac (ERL) [1].

ERLs have received attention in recent years since they
have the potential to accelerate currents much larger than
those of nonrecovering linacs, and since they have the
potential for providing emittances smaller than those in
x-ray storage rings at similar energies and for similar beam
currents. This is due to the fact that the emittances in an
ERL can be as small as that of the electron source, if
emittance increase during acceleration can be avoided.

There are operating ERLs of relative small scale at
TJNAF, JAERI, and Novosibirsk, and several laboratories
have proposed high power ERLs for different purposes.
Designs for light production with different parameter sets

and various applications are being worked on by Cornell
University [2,3], Daresbury [4], TJNAF [5], JAERI [6],
Novosibirsk [7], and KEK [8]. TJNAF has incorporated an
ERL in its design of an electron light-ion collider (ELIC)
[9] for medium energy physics, while BNL is working on
an ERL-based electron cooler [10] for the ions in the
relativistic ion collider (RHIC) and a future electron-ion
collider (eRHIC) [11] based on ERL. The first international
ERL workshop with over 150 participants in early 2005 has
also shown the large interest in ERLs that is prevalent in
the accelerator community.

One important limitation to the current that can be
accelerated in ERLs or recirculating linear accelerators in
general is the regenerative beam-breakup (BBU) instabil-
ity. The size and cost of all these new accelerators certainly
requires a very detailed understanding of this limitation. In
[12] we have described this theory for particle motion in 1
degree of freedom. Here we generalize this theory to 2
degrees of freedom, i.e., to accelerators with polarized
HOMs and x-y coupling of the particle optics.

For 1 degree of freedom, a theory of BBU instability in
recirculating linacs, where the energy is not recovered but
added in each pass through the linac, was presented in [13].
This original theory was additionally restricted to scenarios
where the bunches of the different turns are in the linac at*Electronic address: Georg.Hoffstaetter@cornell.edu
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about the same accelerating radio-frequency phase, such as
in the so-called continuous wave (CW) operation where
every bucket is filled. The theory was generalized in [14] to
include the case of a subharmonic bunching scheme in the
operation of such linacs. Tracking simulations [15] com-
pared well with this theory. This theory determines above
what threshold current Ith the transverse bunch position x
displays undamped oscillations in the presence of a higher-
order mode (HOM) with frequency!�. If there is only one
higher-order mode and one recirculation turn with a recir-
culation time tr in the linac, the following formula is
obtained for T12 sin!�tr < 0:

 Ith � �
2c2

e�RQ��Q�!�

1

T�12 sin!�tr
; (1)

where c is the speed of light, e is the elementary charge,
�R=Q��Q� is the impedance (in units of �) of the higher-
order mode driving the instability, and Q� is its quality
factor. In the case of 1 degree of freedom, T�12 � T12 is the
element of the transport matrix that relates initial
transverse-momentum px before and x after the recircula-
tion loop. A corresponding formula had already been pre-
sented in [16]. Occasionally, additional factors are found
when this equation is stated [17–20], notably an exponen-
tial factor of e��, � � !�tr

2Q�
. In [12] it has been shown that

such additional factors are not required.
Especially [20] might support the false impression that

an exponential factor should be contained in Eq. (1) be-
cause that paper provides exact formulas for two special
cases, where (a) the bunch distance equals the length of the
accelerator loop or (b) it equals half that length, which are
both written with the noted exponential factor times an
additional factor that tends to � for small �. However,
Eq. (1) is a linearization with respect to � and thus only
applies where �e�� � �. A second order analysis shows
that in case (a) the exponential leads to a second order in �
that deviates from the correct factor by as much as that of
Eq. (1), only the sign of the deviation is reversed. In (b),
using the exponential factor actually increases the error of
the second order term.

The beam transport element T12 appears since a HOM
produces a transverse-momentum px during the first pass
of a particle. This produces a transverse position of x �
T12px when the particle traverses the HOM for a second
time, and this in turn excites the HOM itself by means of
the wake function Wx � WT12px.

When the mode is polarized with an angle �, the kick
produced during the first turn corresponds to the momen-
tum �px; py� � p�cos�; sin��. With a coupled optics, the
resulting orbit displacement when the particle reaches
the HOM after the return loop is ~x � p�T12 cos��
T14 sin�; T32 cos�� T34 sin��. This excites the higher-
order mode by the projection of this displacement onto
the wake function, ~W � ~x � Wp	T12cos2�� �T14 � T32�

sin� cos�� T34sin2��.

The HOM therefore produces a transverse kick that
feeds back to itself, exactly as in the case with 1 degree
of freedom, only that T12 needs to be replaced [21] by

 T�12 � T12cos2�� �T14 � T32� sin� cos�� T34sin2�: (2)

While Eq. (1) is derived with one HOM, for 1 degree of
freedom it is often a good approximation even when the
cavity has several higher-order modes. It was shown in [12]
that different HOMs can be treated individually when their
frequencies differ by more than about !�

2Q�
. This statement

does not hold for 2 degrees of freedom as will be shown in
this paper. Modes cannot in general be treated indepen-
dently, even when their frequencies are separated by much
more than the width of the HOM’s resonance.

An optics configuration that makes T�12 close to zero in
order to make the threshold current very large has been
proposed [22,23] and tested for coupled beam transport
and polarized HOMs. This is a good technique when there
is one dominant HOM. When there are several modes this
approach does not apply directly, even if these modes are
separated by more than the width of their resonance. This
statement goes contrary to general wisdom, for example, as
presented in [24], but it will be proven in the remainder of
this paper.

The paper is arranged as follows: first, a dispersion
relation for the current I0�!� is derived including coupling
in a single-turn recirculating linac with one cavity having
multiple polarized HOMs. The smallest real value of I0

that can be obtained with real ! determines the threshold
current. Analytical solutions are given for the case of two
polarized HOMs in one cavity. It is explained how the
dispersion relation for this simple case can be solved
efficiently on a computer, and comparisons to analytical
approximations are presented. Approximations are then
given for N polarized modes in one cavity. Subsequently,
a dispersion relation for multiple cavities and multiple
recirculation loops is derived that can only be solved
numerically with similarly efficient techniques. Finally,
misalignments of cavities are considered to investigate
when these misalignments lead to a very large static dis-
placement of the beam orbit.

II. N POLARIZED MODES IN ONE CAVITY

For simplicity we are here investigating one cavity with
N higher-order dipole modes (HOMs), each having a po-
larization angle �� to the horizontal. Note that slightly
polarized cavities often have at least two HOMs with
similar characteristics, and looking at a single polarized
HOM can therefore be misleading.

The unit vector in the direction of the polarization is
~e� � cos�� ~ex � sin�� ~ey. The effective transverse voltage
in each HOM is V�, so that a particle traversing this HOM
obtains a transverse-momentum change of ec ~e�V�. When ~V
is the vector of all these N voltages, then the momentum
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change is

 � ~p �
e
c

E ~V; E � � ~e1 . . . ~eN �: (3)

When the particle returns to the cavity after the return time
tr, the particle’s position has changed by

 � ~x�t0� � T� ~p�t0 � tr�; T �
T12 T14

T32 T34

� �
: (4)

This position will increase the voltage in V��t� by the
projection of the mode’s wake function W��t� t

0� ~e� onto
� ~x�t0� times the charge I�t0�dt0 that excites the field, i.e.
I�t0�W��t� t0� ~e� � � ~x�t0�dt0. Integrating over all contribu-
tions to the HOM potentials leads to

 

~V�t� �
e
c

Z t

�1
I�t0�W�t� t0�D ~V�t0 � tr�dt0 (5)

with

 W � diag�W��; D � ETTE (6)

and therefore
 

D�� � T12cos2�� � T34sin2�� �
T32 � T14

2
sin2��;

D�� � T12 cos�� cos�� � T34 sin�� sin��

� T32 sin�� cos�� � T14 cos�� sin��:

(7)

Here I�t0� is the current of the bunches that have already
traveled for one turn; in the approximation of short
bunches it is given by

 I�t� � I0tb
X1

m��1

��t� tr �mtb�; (8)

where tb is the period of bunches. This transforms the
integral equation into

 

~V�t� � I0
e
c
tb

X1
m��1

W�t� tr �mtb�D ~V�mtb�; (9)

where W��t� � 0 for t � 0.
The Laplace transform of ~V�t� can be written as

 

~V�t� �tb� �
1

2�

Z 1�ic0

�1�ic0

~~V��!0�e�i!
0td!0; (10)

where 0< �< 1 and c0 > 0. With the following definition

 

~~V �
� �!� �

X1
n��1

~~V�

�
!�

2�
tb
n
�
; (11)

one obtains

 

~~V �
� �!� � tb

X1
n��1

~V�	n� ��tb�e
i!ntb : (12)

Since ~~V
�
� �!� is periodic with 2�=tb, it has a Fourier

series, and its Fourier coefficients are ~V�	n� ��tb�, which

shows that ~~V
�
� �!� does not vanish. The transverse motion

is stable when ~~V�!� is zero for all ! with positive imagi-
nary part. If the current is increased the motion can become

unstable at which point ~~V�!� is nonzero for at least one !
with positive imaginary part. At threshold it is therefore
nonzero for a real value of !.

As in [12] we will use tr � �nr � ��tb to allow for all
recirculating phases, e.g. � � 1

2 for an ERL. The integral
equation now leads to a relation for these coefficients,
 

I�1
0
~V�

0 �!� �
e
c
t2b

X1
m;n��1

W�	n� nr �m� ��tb�


D ~V�mtb�ei!ntb

�
e
c
ei!nrtbW�

� �!�D ~V�
0 �!�: (13)

This formulation shows that ~V�
0 �!� is an eigenvector of the

matrix on the right-hand side, and the corresponding ei-
genvalue is 1=I0. Its solution is therefore very similar to the
matrix theory for BBU computation without coupling in
[13]. The threshold current can thus be determined by
finding the largest real eigenvalue of this matrix for any
real !. Because of the symmetry properties W�

� �!�
2�
tb
� �W�

� �!� and W�
� ��!� �W��

� �!�, it is sufficient to
investigate ! 2 	0; �=tb� to find the BBU threshold cur-
rent,
 

I�1
th �

e
c

maxf�jei!nrtbW�
� �!�D ~V � � ~V;

� 2 R; ! 2 	0; �=tb�g: (14)

A. Two polarized HOMs in one cavity

For a large number of HOMs this equation should be
solved numerically, but for two HOMs an analytical solu-
tion is simple. The characteristic polynomial for the eigen-
value 1=I0 becomes

 

�������� ~I�1 �D11w1 �D12w1

�D21w2
~I�1 �D22w2

� ���������� 0; (15)

with ~I � etb
c e

i!trI0 and w� �
1
tb
ei!�tb�W�

� ���. Solving this
quadratic equation leads to

 

c
etb

e�i!trI�1
0 �

D11w1 �D22w2

2



���������������������������������������������������������������������������
D11w1 �D22w2

2

�
2
� w1w2D12D21

s
:

(16)

To increase the threshold current, the right-hand side of this
formula should be small. The matrix D is determined by
the mode polarization and by the linear particle optics. It
has been suggested [21,22] to use these parameters to
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increase the threshold current. These suggestions amount
to reducing the right-hand side of Eq. (16) by making D11

and D22 small. This is always a valid strategy if there is
only one HOM, i.e. w2 � 0. Then

 D11 � T12cos2�1 � T34sin2�1 �
T14 � T32

2
sin2�1 (17)

and a horizontally (�1 � 0) or a vertically (�1 �
�
2 ) polar-

ized mode together with a beam transport that fully couples
the vertical to the horizontal motion and vice versa, i.e.
T12 � T34 � 0, would always lead toD11 � 0 so that there
would not be any threshold current. A formula for this case
has been derived in [21].

For the case of two or more HOMs this method is no
longer as effective, even when the modes have very differ-
ent frequencies. In fact it has been suggested that, in cases
with several modes, each mode could be considered sepa-
rately when each cavity mode has a resonance width which
is significantly smaller than the frequency separation be-
tween modes [21]. This is however not correct and it will
be seen shortly that the described method that would seem
to increase the threshold current when all modes are con-
sidered separately is not as effective even when mode
frequencies differ by much more than the resonance width.
This is especially important when there are two HOMs of
similar properties, for example, in nearly cylindrically
symmetric cavities. To see this effect, we distinguish three
cases.

1. Circular symmetry

For circular symmetric cavities there are two equivalent
modes with perpendicular polarization, w1 � w2, ~e1 � ~ex,
~e2 � ~ey leading to D � T,

 

I0 �
c
etb

e�i�!tr�#�

Tw1
;

Te
i# �

T12 � T34

2


������������������������������������������������
T12 � T34

2

�
2
� T14T32

s
;

with T 2 R�; (18)

where the threshold current is the smaller of the two values
obtained with the equation for � and for �. For T12 �
T34 � 0 this case has been considered in [25]. If there is no
coupling, T� � jT12j and T� � jT34j. This result is
equivalent to what has been found in [12] for motion in 1
degree of freedom.

As in [12] we now use long-range wake functions of the
form

 W���� �
�
R
Q

�
�

!2
�

2c
e�	�!���=�2Q��� sin�!���; (19)

where Q� is the quality factor, !� is the frequency, and
�R=Q�� is the impedance in units of � for the linac

definition (2 times the circuit definition). As shown in
[12], jw��!�j is especially large when ! is close to !�.

When motion in only one dimension is considered as in
[12], one obtains

 I0 �
c
etb

e�i!tr

T12w�
: (20)

For simplicity we again use K� � tb	�e!
2
��=�2c

2���RQ��
and �� �

!�tb
2Q�

. For nr�� � 1 this leads to the approxima-
tion

 Ith �

8><>:
� 2��

K�

1
T12 sin�!�tr�

for T12 sin�!�tr�< 0;

2
K�jT12j

������������������������������������
�2
� � �

mod�!�tr;��
nr

�2
q

else:

(21)

For �� � 1 but nr�� � 1, the approximation derived in
[12] is

 Ith �
2��

K�jT12j
: (22)

In the case of coupled optics exactly the same approxi-
mation and derivation therefore leads from Eq. (18) to

 Ith �

8><>:
� 2��

K�

1
T sin�!�tr�#�

if it is> 0;

2
K�T

��������������������������������������������
�2
� � �

mod�!�tr�#;��
nr

�2
q

else:

(23)

For �� � 1 but nr�� � 1,

 Ith �
2��

K�T
: (24)

The threshold current is given by Ith � min�Ith�.
To clarify the case considered here, we use typical

parameters for the two HOMs: Q1 � Q2 � 104,
�RQ�1 � �

R
Q�2 � 100 �, !1 � !2 � 2�
 2:2 GHz, tb �

1=1:3 GHz, nr � � � 5:5. For a decoupled optics with
T12 � �10�6 m

eV=c , T14 � T32 � 0, we obtain a threshold
current of Ith � 46:40 mA that agrees to all specified digits
when computed by particle tracking and by the approxi-
mation in Eq. (24). For a very much coupled beam trans-
port (abbreviation x � �10�6 m

eV=c is used below), the
following threshold current is obtained:

 T �
1���
2
p

1 x 1 3x
0 1 0 1
�1 �2x 1 4x
0 �1 0 1

0BBB@
1CCCA) Ith � 20:28 mA:

(25)

Again the threshold current computed by particle tracking
and by Eq. (23) agrees to all specified digits.
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2. Small coupling

We refer to the case with jD11w1 �D22w2j
2 �

jw1w2D12D21j as small coupling. This denomination is
motivated by the fact that, when one mode is polarized in
x and one in y direction, this case occurs when the optical
coupling is small, as can be seen in Eq. (7). Equation (16)
simplifies to

 I0 �
c
etb

e�i!tr

D��w�
; (26)

with � being either 1 or 2.
The approximation that leads from Eq. (20) to Eq. (21)

can again be used and it leads to

 Ith � �
2��
K�

1

D�� sin�!�tr�
for D�� sin�!�tr�< 0;

(27)

and similarly an approximation that corresponds to
Eq. (22) is valid. This formula has been used to argue
that an optics with very small jD��j could be built with
extremely large threshold current. But this equation does
not apply when the jD��j are too small, since then the
following case has to be considered.

3. Strong coupling

We refer to the case with jD11w1 �D22w2j
2 �

jw1w2D12D21j as strong coupling. This case is especially
relevant when the mentioned coupling techniques have
been used to make D11 and D22 very small. One obtains

 I2
0 �

�
c
etb

�
2 e�i!2tr

w1w2D12D21
: (28)

At the threshold current only one of the functions in the
denominator will be very large and we call this w�. The
other mode will be indexed by �.

In [12] a first order approximation in �!tb �
�!�!��tb and �� is used to obtain Eqs. (21) and (22).
Here we again expand to first order in these quantities,
which is simple since w�1

� is linear in them so that w�1
� can

be evaluated at �! � 0 and �� � 0, leading to

 I2
0 �

c
etb

e�i�!2tr�#�

Tw1
; (29)

with Tei# � etb
c w��!��D12D21, T 2 R�. Note that the

exponent contains 2tr instead of tr. The approximations
that correspond directly to Eqs. (23) and (24) can again be
applied.

In [12]w� is evaluated for the long-range wake function,
leading to

 w� �
�
R
Q

�
�

!2
�

4c



ei!

����1�tb sin�!��tb�� e
i�!�tb sin�!�	�� 1�tb�

cos�!�tb�� cos�!�tb�
:

(30)

Note that here w� is defined without a phase factor e�i!�tb
compared to [12] to simplify the notation. For an ERL,
where � � 1=2, one has

 w� �
�
R
Q

�
�

!2
�

2c

cos�!� tb
2� sin�!�

tb
2�

cos!�tb � cos!�tb
; (31)

with !�tb � !tb � i��. Then ! � !� ��! with the
small quantity �!tb. We assume that also �� �

!�tb
2Q�

is
small, which is usually the case whenever BBU is relevant.
A first order expansion in these small quantities leads to

 I2
0 �

2e�i!2tr��!tb � i���

K�K�D12D21

cos�!�tb� � cos�!�tb�

cos�!�
tb
2� sin�!�

tb
2�

:

(32)

If I0 is the threshold current Ith, the right-hand side has
to be a real number, requiring �!tb sin�!2tr� �
�1 cos�!2tr�. This leads to

 I2
th� �

2��
K�K�

cos!�tb � cos!�tb
D12D21 cos�!�

tb
2� sin�!�

tb
2� sin�!�2tr�

;

(33)

whenever this term is positive. Whenever it is negative, the
following approximation follows from [12]:
 

I2
th� �

2

K�K�

�������� cos!�tb � cos!�tb
D12D21 cos�!�

tb
2� sin�!�

tb
2�

��������



���������������������������������������������������
�2
� �

�
mod�!�2tr; ��

2nr

�
2

s
: (34)

For �� � 1 but nr�� � 1, one obtains

 I2
th� �

2��
K�K�

�������� cos!�tb � cos!�tb
D12D21 cos�!�

tb
2� sin�!�

tb
2�

��������: (35)

These formulas are to be evaluated for � � 1, � � 2
and for � � 2, � � 1, and the smaller of the two resulting
currents is the threshold current,

 Ith � minfIth�j� 2 f1; 2gg: (36)

An interesting observation is that for two modes with
similar Q�, �RQ��, and !�, the ratio of the threshold current
with and without coupled optics can be found by compar-
ing Eqs. (33) and (27) and it is proportional to

�����������
1=��

p
/�������

Q�
p

. For cavities that are optimized for large currents by
means of sophisticated HOM damping, the advantage of a
coupled optics therefore decreases. This effect is indepen-
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dent of the length of the return loop and is already relevant
for a single cavity.

Figure 1 refers to a linac with one cavity and tr �
555:5tb that has two HOMs, one with f1 � !1=2� �
2:2 GHz polarized in x and one with f2 � !2=2� �
2:3 GHz polarized in the y direction, �RQ� � 100 �, and
Q � Qx � Qy is varied. The red curve (top data) refers to a
decoupled optics and the blue curve (bottom data) to a fully
coupled optics with T12 � 0 and T34 � 0. The data with
Q> 1010 are practically not relevant today but are shown
to demonstrate the scaling with Q. A double-logarithmic
plot is shown, which makes it apparent that the threshold
current for a decoupled optics with T12 � 10�6 m

eV=c de-
creases withQ�1, as indicated by the line with slope�1. A

closer look shows that the slope is only accurately �1 for
relatively small and relatively large Q where either ap-
proximation (21) or (22) holds. A totally coupled optics
with T12 � 0 and T34 � 0 leads to a larger threshold
current than without coupling, but when Q of the modes
is reduced, the threshold current increases only with
Q��1=2� as indicated by a line with slope � 1

2 . The advan-
tage of coupling decreases proportionally to

����
Q
p

.
Figure 2 similarly shows the advantage of polarizing the

higher-order modes in the ERL that is proposed to upgrade
the CESR ring at Cornell University [26]. When the HOMs
are polarized in the x and the y direction and the optics is
completely coupled by T12 � 0 and T34 � 0, the threshold
current is larger than without coupling, but again this
advantage is smaller when the HOMs are damped more
strongly by HOM absorbers. These conditions of complete
coupling are obtained for every cavity in a linac when a
section between the first and the section path through the
linac is adjusted such that it transforms horizontal phase
space coordinates into vertical ones, and vice versa.
However, the figure shows that, when many cavities are
present, as in the ERL where there are 320, the scaling is
not as simple as in the case of a single cavity and the
advantage of coupling does not decrease as strongly with
decreasing Q.

For Table I the 320 cavities of the ERL upgrade of CESR
had nominal HOM frequencies of fx1 � 1:873 94 GHz and
fx2 � 1:881 73 GHz with horizontal polarization. The
mode with vertical polarization is fy � fx ��fxy. The
cavities have HOM frequencies that have a Gaussian dis-
tribution around these values with rms width 	rf . We used
500 different random distributions of the frequencies and
display the average threshold current Ith as well as the rms
	I of the 500 resulting thresholds.
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FIG. 1. (Color) The threshold with two modes in one cavity
scales with Q�1 for a decoupled (red, bottom curve) and with
Q��1=2� for a fully coupled optics (blue, top curve). The advan-
tage of coupling thus diminishes for low Q.
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FIG. 2. (Color) Scaling with Q of the threshold increase due to
coupling for the x-ray ERL upgrade of CESR. Red, bottom
curve: scaling with Q�1 for a decoupled optics. Blue, top curve:
a line indicates scaling with Q��1=2�, the points are obtained for a
fully coupled optics.

TABLE I. Threshold currents for the four most significant
HOMs of the Cornell ERL.

�fxy
(MHz) Coupling

	rf

(MHz)
Ith

(mA)
	I

(mA)

10 No 0 25.8 0
10 Yes 0 93.4 0
10 No 1.3 268 43
10 Yes 1.3 680 100
60 No 10 409 69
60 Yes 10 2227 380

TABLE II. The threshold current, Ith	I (mA), for polarized
modes with rms frequency spread of 10 MHz.

Modes 1,2 Modes 1– 4 Modes 1–6 Modes 1–8

2419:5432:0 2227:0380:0 1923:2317:0 1881:3297:0
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While these threshold currents were simulated with only
the 4 most destructive HOMs in each cavity, we have seen
that including more modes does not strongly diminish the
threshold current, as shown in Table II. A more detailed
account of threshold simulations for the x-ray ERL can be
found in [27].

Characteristics of the 8 modes that were used are shown
in Table III.

B. Comments about numerical solutions

When the threshold current for two polarized modes at
!� and !� should be found by solving Eqs. (26) and (28)
numerically, the eigenvalues are plotted in the complex
plane, and the intersections with the real axis are sought
that lead to the smallest current. An example of the two
eigenvalues plotted in the complex plane is shown in Fig. 3.
The eigenvalues are largest in the vicinity of ! �
jmod�!�;

2�
tb
�j, � 2 f1; 2g, since there either w� or w�

become very large. The subscript on the mod function
indicates that mod��x; 1� 2 	0; 1� and mod��x; 1� 2
	� 1

2 ;
1
2�.

Furthermore, the eigenvalues trace out loops around the
origin of the complex plane about once per 2�

tb
variation of

!, due to the exponential factor in Eq. (26). We therefore
vary ! only in a  2�

tb
interval around each HOM fre-

quency. This speeds up the search for eigenvalues by a
factor proportional to nr, which can be very large.

A simple approach would be to plot all eigenvalues in
the complex plane and to select the smallest eigenvalue
that is reasonably close to the complex plane. Large factors
in speed can be gained when the loops that are traced out
by each eigenvector can be interpolated and their intersec-
tion with the real axis can be found, since the loops have to
be scanned much less densely. We have found that using
values of I0�!�, where two are above and two below the
real axis, and fitting an upright ellipse to these values is a
very good parametrization. The accuracy achieved for
distributing k particles in the described region around
each HOM frequency leads to the accuracy documented
in Fig. 4.

C. Comparison of results for polarized modes and
coupling

To demonstrate the excellent agreement between these
numerical solutions and tracking, we depict Fig. 5 where
one HOM with horizontal polarization has been fixed at
fx � 2:2 GHz, and another has been varied for fy 2
	1:2; 3:2� GHz. The optics was completely coupled with
T12 � T34 � 0 and T31 � �T14 � 10�6 m

eV=c . Several
things can be observed: (1) since tracking is relatively
time consuming, only relatively few frequencies for the
second HOM have been evaluated, but all of them lie
exactly on the curve that follows from the dispersion
relation. (2) The threshold current varies strongly when

TABLE III. The eight most relevant polarized HOM modes for
the x-ray ERL.

Mode number f� (GHz) Q� �R=Q�� [�] ��

1 1.873 94 20 912.4 109.60 0
2 1.813 94 20 912.4 109.60 �=2
3 1.881 73 13 186.1 27.85 0
4 1.821 73 13 186.1 27.85 �=2
5 1.861 37 4967.8 71.59 0
6 1.801 37 4967.8 71.59 �=2
7 2.579 66 1434.2 108.13 0
8 2.519 66 1434.2 108.13 �=2
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FIG. 3. Two eigenvalues trace out loops for I0 in the complex
plane while ! is varied.
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FIG. 4. (Color) Variation of the relative accuracy �I
I for scanning

!�!� 2 	�
2�
tr
; 2�
tr
� by k points. By far, the best accuracy is

achieved with the elliptical extrapolation of 4 points around the
real axis (black dots). For an approximation by a line between
two points (red, largest at large k), a second order polynomial
y�x� fitted to three points (green, second largest at large k), and a
third order polynomial y�x� fitted to four pints (blue, third largest
at large k) all lead to much worse accuracies and/or computation
times.
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the second HOM is varied, but the agreement with tracking
shows that this is not numerical noise but a consequence of
the coupling between the two polarized modes whose
frequencies are very far apart. (3) There are frequencies
where the threshold current is relatively small, these are
frequencies where cos�!1tb� � cos�!2tb� in agreement
with Eq. (32). The displayed minima appear at �3

1:3–2:2� GHz, 2:2 GHz, and �4
 1:3–2:2� GHz. But the
regions with reduced threshold are relatively wide; in
particular, they are much wider than the width of HOM
resonances.

Depicted in color are the values obtained by approxima-
tions derived above. It is apparent that the approximations
are not always very good, especially that they lead to
values that are too large. A magnification in Fig. 6 shows
that the reason for that is that the approximate formulas
lead to parabolic shapes that have the correct minimum
value, but not the correct width. This is important since it
shows that the formulas can be used to find the correct
minimum value as a conservative estimate. Furthermore,
the magnifications again show the good agreement with
tracking results.

Here an important note is in place. One place where a
strong dip occurs is when!1 � !2. This dip is much wider
than the width of the HOM resonance of !�=Q�, showing
that the two modes clearly do not decouple when they are
separated by more than their width. For nominally circular
symmetric cavities, HOMs are not degenerate due to con-
struction errors and each mode splits into two modes with
typically a few MHz distance. But the dip is much wider
than that, showing that an appropriate advantage of BBU
suppression by damping can in general only be realized
when polarized cavities are designed, i.e., cavities where
the horizontal and vertical dimensions are designed to be

slightly different, leading to HOM frequencies that differ
by several 10 MHz in the two planes.

The question arises how far the HOM frequencies have
to be apart. In Fig. 7 we show for the Cornell ERL how Ith

changes with �fxy. In order to avoid averaging over many
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FIG. 6. (Color) Magnification of regions in Fig. 5.
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FIG. 7. Dependence of Ith on �fxy for the Cornell ERL.
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FIG. 5. (Color) Threshold current for one horizontal HOM with
fx � !x=2� � 2:2 GHz as a function of the frequency fy of a
vertical HOM. Black curve: dispersion relation; red dots: track-
ing; green dots: the approximation derived above. For clarity, a
subinterval of this graph is shown in Fig. 6.
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different frequency distributions, we have here chosen the
same two HOM frequencies for each of the 320 cavities.
The data indicates that a mode separation of 60 MHz is
sufficient. This has been used to compute the very large
recirculating BBU threshold current of more than 2 A for
this accelerator shown in Table I. It should be noted that
only the two dominant HOMs were considered in this
simulation, more modes are considered in [27]. The
Cornell ERL is designed for 100 mA and this calculation
indicates that polarized cavities with a coupled optics
provide a very comfortable safety margin with respect to
this instability. However, Table I shows that, even without a
coupled optics but with a distribution of HOM frequencies,
a sufficient Ith can be obtained, making polarized cavities
not absolutely necessary.

While the advantage of introducing the 60 MHz mode
separation is significant, there are problems associated
with changing the cavity geometry to produce such a
separation. For instance, higher-order multipole fields
and associated focusing effect as well as interferences
between modes of neighboring passbands could have un-
pleasant consequences. We are currently designing a suit-
able polarized 7-cell cavity to analyze these questions.

D. Approximation for N polarized HOMS in one cavity

As a first approximation, one can assume that one com-
ponent of the eigenvectors in Eq. (13) will be very large.
This would lead to a decoupling of HOMs so that each
HOM could be treated separately, as for a single degree of
freedom. One could therefore derive the threshold with the
smallest current for each individual HOM, and this would
approximate the threshold for the complete accelerator.
When all these thresholds are very large, one has to inves-
tigate the next approximation, where the eigenvector has
two dominant components. In this case the eigenvalues are
determined from a 2
 2 matrix corresponding to Eq. (15).
The threshold current has to be computed for each pair of
HOMs. The smallest current obtained for one pair of
polarized modes then approximates the threshold current
of the full accelerator.

III. POLARIZED HOMS IN MANY CAVITIES AND
FOR MULTIPLE TURNS

Recirculating linacs with many cavities and several
recirculation loops have been considered early on
[13,28]. In [12] a description for arbitrary recirculation
times has been presented. Here we want to extend this
description to include orbit coupling and polarized modes.
As far as possible, we retain the notation of these earlier
papers. The N higher-order modes, which can be associ-
ated with different cavities, are numbered by an index i.
The Np passes through the linac are numbered by an index
I. The horizontal and vertical phase space coordinates that
the beam has at time t in the HOM i during turn I is
denoted ~zIi �t� � 	x

I
i �t�; p

I
xi�t�; y

I
i �t�; p

I
yi�t��

T . The 4
 4

transport matrix that transports the phase space vector ~zJj
at HOM j during turn J to ~zIi is denoted T4IJ

ij and the time it
takes to transport a particle from the beginning of the first
turn to HOM i during turn I is denoted tIi . The beam is
propagated from after HOM i� 1 to after HOM i by

 ~z Ii �t� � T4II
ii�1 � ~z

I
i�1�t� 	t

I
i � t

I
i�1�� �

e
c
~Vi�t�; (37)

with ~Vi � Vi�0; cos�i; 0; sin�i�
T . This equation can be iter-

ated to obtain the phase space coordinates as a function of
the HOM strength that creates the orbit oscillations. With
the matrix

 T IJ
ij �

�T4IJ
ij �12 �T4IJ

ij �14

�T4IJ
ij �32 �T4IJ

ij �34

 !
; (38)

one obtains

 ~x Ii �t� �
XI
J�1

XNIJ�i�1�

j�1

TIJ
ij ~ei

e
c
Vj�t� 	t

I
i � t

J
j ��; (39)

 NIJ�i� 1� �
�
N; if I � J;
i� 1; if I � J:

(40)

The strength Vi�t� of the HOM i with polarization di-
rection ~ej is created by all particles that have traveled
through that HOM via the integral

 Vi�t� �
Z 1
�1

XNp
I�1

Wi�t� t
0�IIi �t

0� ~eTi ~x
I
i �t
0�dt0; (41)

where IIi �t� is the current which the beam has on its Ith turn
at the HOM i. Note that W�t� t0� � 0 for t0 > t.
Combining this with Eq. (39) leads to the following
integral-difference equation:
 

Vi�t� �
Z 1
�1

XNp
I�1

Wi�t� t
0�IIi �t

0�
e
c



XI
J�1

XNIJ�i�1�

j�1

DIJ
ij Vj�t

0 � 	tIi � t
J
j ��dt

0; (42)

 DIJ
ij � ~eTi TIJ

ij ~ej: (43)

This equation is identical to that obtained for 1 degree of
freedom, only that �TIJ

ij �12 is replaced by DIJ
ij . The follow-

ing treatment for obtaining the threshold current is there-
fore identical to that in [12]. For completion it is here
presented in simplified form, and recommendations for
numerical solutions are given.

Now the approximation of short bunches is used. The
current is given at time t by pulses that are equally spaced
with the distance tb,

 IIi �t� �
X1

m��1

I0tb��t� tIi �mtb�: (44)
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This reduces the integral to a sum,

 Vi�t� �
e
c
I0tb

X1
m��1

XNp
I�1

Wi�t� t
I
i �mtb�



XI
J�1

XNIJ�i�1�

j�1

DIJ
ij Vj�mtb � t

J
j �: (45)

This leads to

 

~V �
i;tLi =tb

�!� �
e
c
I0t2b

X1
n��1

X1
m�1

XNp
I�1

Wi�mtb � tLi � t
I
i �



XI
J�1

XNIJ�i�1�

j�1

DIJ
ij Vj�	n�m�tb � t

J
j �e

i!ntb

�
e
c
I0

XNp
I�1

~W�
i;tLi �t

I
i

XI
J�1

XNIJ�i�1�

j�1

DIJ
ij

~V�
j;tJj =tb

�!�:

(46)

If a vector ~V is introduced that has the coefficients ~V�
i;tIi

,

this equation can be written in matrix form,

 

1

I0

~V �M�!� ~V; (47)

with the matrix coefficients

 MLJ
ij �

e
c
tb

XNp
I�J��j;i

~Wi;	tLi �t
J
i �=tb
�!�DIJ

ij

�j;i �

�
1; if j � i;
0; otherwise:

(48)

Note that ~W�
i;	tLi �t

I
i �=tb
� ~W�

i;�i�I;L�
ei!Top	�tIi�t

L
i �=tb�tb , where

Top�x� is the smallest integer that is equal to or larger
than x and �i�I; L� � mod�tIi � t

L
i ; tb�. With Kronecker �̂ik

this determines the matrices W and U to be

 WLI
ik �

e
c
tbwi	��I; L��ei!Top	�tI�tL�=tb�tb�ik; (49)

 UIJ
kj � TIJkj�I;J��j;k

: (50)

For each frequency !, I�1
0 is an eigenvalue of M�!�.

Since the eigenvalues are in general complex, but I0 has to
be real, the threshold current is determined by the largest
real eigenvalue of M�!�. The matrix has the properties

 M
�
!�

2�
tb

�
�M�!�; M��!�� �M��!�; (51)

and it is therefore again sufficient to investigate ! 2
	0; �=tb� to find the threshold current.

Note that V
Np
N never appears since the last kick on the

last turn does not feed back to any HOM, so that the
dimension of M can be reduced by one to N 
 Np � 1.

Furthermore, the dimension can be reduced when two
fractional parts �Ii and �Ji are equal since then VIi and VJi
are identical.

A. Multiturn operation and cavity misalignments

Since the formalism presented here that includes polar-
ized modes and coupled optics is identical to the formalism
in 1 degree of freedom, only that �TIJ

ij �12 has been replaced
by DIJ

ij , all conclusions about multiturn recirculating and
multiturn ERLs hold. For example, in [12] it was con-
cluded that, for one HOM and for Np passes through the
linac, the threshold current should roughly scale as
Np�2Np � 1�. The origin of this conclusion results from

the double sum
PNp
I�1

PI
J�1 . Since the same summation

appears, this conclusion holds also for polarized modes
with coupling.

While this quadratic scaling with Np also applies with-
out polarized modes and without coupling, there is an
additional problem in the case of coupled optics that is
designed to reduce the absolute values of all:

 DIJ
�� � TIJ12cos2�� � T

IJ
34sin2�� �

TIJ14 � T
IJ
32

2
sin2��:

(52)

Choosing polarized cavities so that sin2�� � 0 for all
modes and using fully coupled optics makes all D12

�� zero
for a one turn ERL leading to the approximate threshold
current in Eq. (32). For a two turn ERL, D12

�� for the first
turn and D23

�� for the second turn become zero. However,
D13
�� for both turns is in general not zero. Since T13 �

T23 
 T12, full coupling with T12
12 � T12

34 � 0 and T23
12 �

T23
34 � 0 leads to

 T13
12 � T23

13 cotT12
32 � T

23
14 � T

12
42 ; (53)

 T13
34 � T23

31 cotT12
14 � T

23
32 � T

12
24 : (54)

While the optics can be fine-tuned so that T13
12 � T13

34 � 0
holds for the location of one cavity, it will in general not
hold for all cavities along a linac. The reason is that the
transport of the first turn couples a horizontal oscillation
that starts in the first pass through the linac into the vertical
oscillation during the second pass, which in turn couples
back into a horizontal oscillation during the third pass.

For misaligned cavities, HOMs are excited even when
the current is smaller than the threshold current. This can
lead to large beam excursions, and in [12] it was analyzed
for what currents these excursions become extremely large.
It was found that the BBU threshold current is always
smaller than the current for which these orbit excursions
would get very large. Since the formalism presented here
with coupling and polarized modes has the same formal
structure, this conclusion again holds.
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B. Comments about numerical solutions

As pointed out above where numerical solutions for one
return loop and two HOMs were found, it is very essential
to systematically search for real values for the eigenvalues
of M. Each eigenvalue traces out curves in the complex
plane when ! is varied in the region 	0; �=tb�, however
eigenvalue finders usually do not return eigenvalues in any
particular order, so that these curves cannot be observed
easily. If they could be observed, then ellipses could be
fitted to these curves and the intersection of the curve with
the real axis could very efficiently be found for each
eigenvector.

We therefore recommend a sorting algorithm that sorts
eigenvalues rather robustly: (1) Normalize each eigenvec-
tor. (2) Sort these vectors according to their largest com-
ponent, i.e., the vector which has its largest component in
position 1 is the first vector, if there are more than one of
this kind, the one with the largest coefficient can be chosen
as first vector, etc. (3) Associate the eigenvalues in the
order of these eigenvectors. Small changes of ! do not
change the relative size of the eigenvector elements much.
The intersection of the curve �i�!� with the real axis can
now be found for each eigenvector. This procedure leads to
an enormous speed advantage over simply scanning all
eigenvalues for a mesh of ! 2 	0; �=tb�, and choosing
the largest eigenvalue that is reasonably close to the real
axis.
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