FABRICATION AND PERFORMANCE OF SUPERCONDUCTING RF CAVITIES FOR THE CORNELL ERL INJECTOR


Abstract

Six 1300 MHz superconducting niobium 2-cell cavities are manufactured in-house for the prototype of the Cornell ERL injector to boost the energy of a high current, low emittance beam produced by a DC gun. Designed for high current beam acceleration, these cavities have new characteristics as compared to previously developed low-current cavities such as those for TTF. Precision manufacture is emphasized for a better straightness of the cavity axis so as to avoid unwanted emittance dilution. We present the manufacturing, processing and vertical test performance of these cavities. We also present the impact of new cavity characteristics to the cavity performance as learnt from vertical tests.

INTRODUCTION

A 5 GeV ERL based X-ray light source is the goal of the ERL project at Cornell University. The project is currently in the phase of prototyping its injector, which consists of a DC photo-emission gun, a normal conducting copper buncher cavity, and a booster cryomodule hosting five 2-cell superconducting RF (SRF) cavities [1] [2].

A schematic layout of the five-cavity string is shown in Fig. 1. The injector SRF cavities accelerate a 100 mA CW power to the beam. Beam-line tile absorbers are fitted between cavities for damping HOM’s.

CONSIDERATIONS IN ELECTRO-MAGNETIC AND ENGINEERING DESIGN

Designed for high current beam acceleration [3], the 1300 MHz 2-cell cavity geometry is optimized to allow propagation of HOM’s into beam-line HOM absorbers. Efficient HOM propagation is facilitated by a transition from the 78 mm iris to a 106 mm beam tube diameter. In contrast to other 1300 MHz cavities designed for operation in the pulsed mode where Lorentz force detuning is important, the 2-cell ERL injector cavities have omitted stiffening rings in their mechanical design.

CAVITY FABRICATION

An important goal for the cavity fabrication is to achieve critical dimensions at a high precision. The mechanical axes of all welded components must stay at a tight tolerance within the cavity axis as defined by end flanges of the two beam tubes. This improves the straightness of the cavity electrical axes and reduces unwanted emittance dilution. Strict QA/QC procedures were implemented for each individual component and sub-assembly. Cups are fabricated with RRR 300 niobium sheets (Wah Chang) by standard deep-drawing and coining method. The RF input coupler ports are fabricated with a CNC milling machine. This allows a high precision in the symmetry between the twin RF input couplers, important for avoiding coupler kicks to bunches. We have chosen RRR 200 niobium (Tokyo Denkai) for the coupler block since the field in this region is still rather high. Reactor grade thin-walled niobium tubes (rolled and welded in-house as well as seamless tubes purchased from OTIC) are used for beam tubes. This reduces the static heat leak into the 2K liquid helium. All cavity flanges have the Conflat design, the size of which ranges from 1-1/3 to 6 inch. The knifedge is machined after a 316LN stainless steel ring is furnace brazed onto a niobium tube. Each cavity has 6 brazed flanges plus one more on the liquid helium vessel. The helium vessel dishes have the Conflat design, the size of which ranges from 1-1/3 to 6 inch. The knifedge is machined after a 316LN stainless steel ring is furnace brazed onto a niobium tube. Each cavity has 6 brazed flanges plus one more on the liquid helium vessel. The helium vessel dishes are fabricated from titanium and electron beam welded to the niobium cavity. The helium vessel (flanges, tank and bellows) is also made from titanium and is entirely manufactured with electron beam welding. Figure 2 shows a picture of the 2-cell cavity before and after the helium vessel is welded.
Post-fabrication tuning is done with a mechanical apparatus as shown in Fig. 3(a). The prototype cavity as built had a frequency error of more than 4 MHz. It was tuned by removing material from the inner surface of the inductive region of the cells with a tumbling apparatus (Fig. 3(b)).

Figure 3: Tuning of a 2-cell cavity by stretching/squeezing the cell length with a tuning apparatus (a) or by removing material from the inductive region of the cell with a tumbling apparatus (b).

CAVITY PROCESSING

The inner surface of a completed cavity is etched for 120 µm with BCP1:1:2 as shown in Fig. 5(a) at a temperature below 15 °C (water cooling cavity). Because of the vertical orientation during etching, the cavity needs to be flipped to eliminate asymmetric removal across cells. Brazed joints and knifedges at the Conflat flanges are protected by Teflon plugs shielding them from being attacked by the acid.

After chemical etching, the cavity is rinsed with a closed-loop DI water system for over night, followed by a 4-hour session of high-pressure water rinsing in our clean room as shown in Fig. 5(b).

Figure 4 gives the result of the straightness of the cavity mechanical axis as measured by CMM. The best straightness of 0.005 inch is achieved in as-built cavities. The initial good straightness in cavity #3 is somehow spoiled after the vertical test. It appears that the cavity is bent over the center iris.

Figure 4: Cavity axis straightness measured by the off-center deviation of cavity segments projected to a plane perpendicular to the fiducial axis.
CAVITY PERFORMANCE

The $Q(E_{\text{acc}})$ performance of the cavities is summarized in Fig. 6. Field emission was strong during vertical tests of some cavities. Cavities will be HPR’ed again before string assembly.

A processing phenomenon, starting from 3.5 MV/m up to 8 MV/m, was reproducibly observed when the field was raised for the first time. Guided by the suspicion of multipacting, renewed simulation studies were carried out with the code MULTIPAC with a new model which includes, in addition to cavity cells, the enlarged beam tube. It turns out that a multipactor exists near the bend in the enlarged beam tube (see Fig. 7). An experiment clearly confirmed the existence of the multipactor: detection of electrons by a biased probe and correlated temperature changes by thermometers at the outer wall of multipacting region.

Nevertheless, it is possible to process through the multipacting barriers. And the field amplitude and phase are stable after processing. The multipactor can re-appear and re-processing is faster. The bath pressure and Lorentz force detuning coefficients are both significantly larger as compared to that of a TTF cavity which has stiffening rings. Lorentz force detuning is not a problem for CW operation. It is expected that LLRF will handle Lorentz force detuning in case of field ramp up and field variation for emittance optimaztion. Multipactor re-appearing and sensitive bath pressure detuning may both affect the operation of the cavity when used for beam acceleration. We expect a full assessment of their impacts during the upcoming horizontal tests. Future development of this type of cavity should consider to improve its mechanical strength by adding stiffening rings.

CONCLUSION

Six 2-cell niobium cavities are fabricated for the Cornell ERL prototype injector. Conflat flanges with a brazed 316LN stainless-steel/niobium joint work reliably in superfluid liquid helium. All cavities pass the gradient specification of 15 MV/m. The multipactor at the bend of the enlarged beam tube can be processed through. The field amplitude and phase are stable after processing. The multipactor can re-appear and re-processing is faster. The bath pressure and Lorentz force detuning coefficients are both significantly larger as compared to that of a TTF cavity which has stiffening rings. Lorentz force detuning is not a problem for CW operation. It is expected that LLRF will handle Lorentz force detuning in case of field ramp up and field variation for emittance optimaztion. Multipactor re-appearing and sensitive bath pressure detuning may both affect the operation of the cavity when used for beam acceleration. We expect a full assessment of their impacts during the upcoming horizontal tests. Future development of this type of cavity should consider to improve its mechanical strength by adding stiffening rings.

ACKNOWLEDGMENT

We would like to thank J. Fuerst and M. Kelly of ANL and L. Phillips of TJNAF for their advice on brazing niobium/stainless-steel flanges. We would also like to thank J. Kaufman for performing CMM measurements and G. Eremeev for his help in making a Labview program used during vertical cavity tests. RLG is indebted to A.C. Crawford for many stimulating discussions and also for joining the vertical test of the first prototype cavity.

REFERENCES