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Abstract

We have developed a new in situ method to measure heating-induced distortions of the surface of the first monochromator crystal

exposed to high-power white synchrotron radiation beam. The method is based on recording the image of a stationary grid of dots

captured by a CCD camera as reflected from the surface of a crystal with and without a heat load. The three-dimensional surface profile

(heat bump) is then reconstructed from the distortions of the original pattern. In experiments performed at the CHESS A2 wiggler beam

line we measured the heat bumps with the heights of up to 600 nm produced by a wiggler beam with total power in the range of 15–60W

incident on the (1 1 1) Si crystal at various angles between 31 and 151.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

High heat load of the optical elements of modern
synchrotron radiation (SR) beam lines under powerful
undulator or wiggler beams is one of the main factors
limiting available photon flux for experiment. Thermal
distortions of the lattice of the first crystal, typically Si, due
to the inhomogeneous absorption of the incident white or
pink beam in the bulk of the crystal lead to a broadening of
the rocking curve and reduction in peak intensity.
Sophisticated cooling techniques such as liquid N2 cooling
[1] have been developed at the 3rd generation SR sources to
minimize this effect. The heat load problem is expected to
be more severe at the next generation sources.

Almost all studies of crystals under high heat load so far
were performed by measuring an X-ray response, i.e. a
double crystal rocking curve, which is a convolution of the
first, distorted, crystal with the second perfect crystal. That
produces an integral over the footprint of the beam
characteristic with all the details of the complex thermal
e front matter r 2007 Elsevier B.V. All rights reserved.
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distortion distribution lost. Our understanding of the heat
problem would benefit significantly if we could be able to
measure the shape of the surface of the first crystal or
multilayer, i.e. the so called heat bump, in situ under the
high heat load.
There are several approaches to visualizing distorted

surfaces. Flatness of a reflecting surface can be evaluated
with micro-radian accuracy over a large area using optical
methods such as the long trace profiler (LTP), as Takacs
et al. demonstrated [2–3]. It measures the surface slope along
a line of a mirror. The method uses a laser beam reflected
from the test surface and the reference mirror. Part of the
optical system is mounted on a precision translation stage
to scan along the mirror surface. Takacs’s method showed
excellent accuracy of slope error (deviation from the ideal
flat) measurement and it was used also to measure a heat-
bump profile on a beam line mirror surface as a result of a
�100W X-ray radiation. To recover the shape of a weld-
pool in three dimensions, Saeed et al. [4] used a laser beam
reflected from the surface. In his measurement, the reflected
beam was captured with a CCD camera and the positions
of the laser spots were analyzed to reconstruct the weld-
pool surface. In Saeed’s experiment, the typical weld-pool
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depth was in the tens of microns range and probed surface
area was 3.5� 1.5mm2.

The LTP method provides excellent accuracy in deter-
mining surface shapes, however, it only provides informa-
tion along a line. In the case of SR optics under the white
beam the typical heat-bump results in a slope error in the
range of a few tens of micro-radians and the affected area is
a few square centimeters. In this work, a new optical
technique based on analyzing an optical image of a
periodic rectangular array reflected by a mirror surface of
the distorted crystal is presented and first experimental
results of a direct measurement of three-dimensional (3-D)
heat-bump surface profiles under a wiggler beam are
discussed.

2. Technique description

The principle diagram of our setup is shown in Fig. 1. A
flat panel light source covered by a thin metal shield with
an array of small holes served as an object to be imaged.
The video camera captures the image of the light-dot array
reflected from the optically polished first crystal of the
monochromator. The spacing between the holes was
1.5mm and hole diameter was 0.3mm. A total of
4� 4 in. area was covered by the array of holes. This dot
array light source was placed inside the monochromator
box replacing the second crystal. To capture the image of
the dot array light source we have used a high-sensitivity
Astrovid CCD camera with a 55mm telecentric lens.

The heat-bump measurement was done at the CHESS
A2 beam line fed by a 49-pole wiggler. We used a 10mm
thick, 2� 4 in. Si/1 1 1S crystal. The crystal was attached
to a water-cooled copper substrate covered by liquid
Indium for better thermal contact. During the experiment
the crystal angle varied between 41 and 151 thereby varying
the beam footprint and X-ray power density hitting the
crystal. In addition, the beam defining slit sizes were varied
from 0.3� 3mm to 0.6� 6mm (the dimensions are
Fig. 1. Principal scheme of heat-bump measurement. The image of an array o

The position of the dots in the image shifts as the crystal becomes deformed a
vertical-by-horizontal). The total white beam power
impinging the crystal surface varies between 15 and 60W,
depending on the entrance slit size of the monochromator.
The Astrovid CCD camera was mounted on top of the
monochromator box and the images were captured
through a high-vacuum view-port. In our experimental
setup the camera views only a portion of the dot array (on
average 20� 30 dots) and only a portion of the total
surface of the Si crystal (on average a 20� 30mm2 area).
This coverage is mainly determined by the camera-crystal
and crystal-light source distances as well as the optics used.
To measure the change in position of each dot of the

array we have used a modified version of the program
Centroid described earlier [5]. This program analyzes each
captured frame and calculates the (x, y) position coordi-
nates based upon center-of-gravity (COG) calculations for
the pixel intensities within a region of interest. The
accuracy of the position determination has been shown to
be better than a micron. In the case of the dot array light
source used for heat-bump measurement the COG of each
light dot is calculated. As part of the surface distorts, as a
result of the beam heating, it acts as a distorted mirror, the
dots will move away from their original position depending
on the amount of distortion. As long as the distance
between the optical elements is constant, the change in dot
positions Dx, Dy is proportional to the change in the slope
angle of the surface Dyx, Dyy. The fact that the crystal is
mounted on a precise goniometer offers an easy and
accurate way to calibrate the measuring system by
introducing a small calibrating tilt motion of the crystal
and recording the observed change in the position of the
dots. The Centroid program will generate an array
containing Dyx, Dyy for each light dot point—the slope
error vector map. Calculation of the slope vector map is
done using a fixed rectangular grid array encompassing
each dot. (Unlike [4], where the laser dots were followed
with a sophisticated tracking algorithm.) Thus, the COG
calculation was carried out for each grid cell resulting in
f light-dots is captured with a CCD camera as reflected from the crystal.

s a result of beam heating.
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the slope vector map. The slope vector map is displayed
on-the-fly by Centroid as a vector map as well as being
saved for further data analysis. In order to improve the
signal-to-noise ratio of the video data collection, for each
slope error vector map 10 captured frames were averaged,
and for each frame median filtering was applied to
minimize the effects of ‘‘zingers’’ (attributed to random
extreme pixel values due to scattered X-rays.) The
advantage of using median filtering of the image (in our
case a 3� 3 median matrix was used) is that it alters
single pixels that stand out from their surrounding. We
apply the median filter for each captured frame thus
avoiding the possibility of joining ‘‘zingers’’ to extend over
multiple pixels. On the other hand, the effect of a local
hotspot on the surface will extend laterally to a distance of
�(Dt)1/2, where D is the thermal diffusivity of silicon
(�0.5 cm2 s�1) and t is a characteristic measurement time.
Even in the best case, when the heat bump is measured for
each captured frame (1/30 s) the thermal diffusivity of Si
will ‘‘smear’’ a hotspot over thousands of microns
corresponding many pixels in the image thus unaltered by
the median filtering.

It has been shown in Ref. [5] that the measurement of a
centroid position of a light spot using an 8-bit CCD
cameras can be done with sub-micron accuracy. There is a
simple, linear relation between the apparent change of the
position D of the light dots and the change in the angle a of
the reflecting surface: a ¼ D/L, where L is the total path
length between the light dots and the camera. Therefore,
Slit: 0.3x3 mm Slit: 0.3x6 mm
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Fig. 2. Crystal tilted 51, shown for three sizes of slit openings, as indicated. Th

position of each light dot. The relative (to no heat load position) shift of each

position shift, proportional to the slope error at a particular position on th

The vertical scales of the heat-bump height shown in microns. Note that the s
the x and y components of changes in the slope vector of
the reflecting surface are directly proportional to the
observed changes of the light dots in the x and y directions.
Because the crystal is mounted on a goniometer the
calibration of the optical elements for the slope
vector measurement can be done conveniently by produ-
cing a known increment of crystal tilt (we used 50 mrad) of
the reflecting crystal and measuring the shift of the light
dots.
The minimum detectable change in the slope of the

reflecting surface is directly related to the minimum
detectible change in centroid position of the light dots.
This in one hand is determined by quality and signal-to-
noise ratio of the image captured, on the other hand, by the
amount of demagnification of the optical system. In our
present configuration, the position measurement of the
light dots was determined with an accuracy of s�0.8 mm.
This translates to an accuracy of s0o2 mrad for the
measurement of slope error vector. The 2 mrad slope error
translates to 20 nm variations in height when measured
with a 1� 1mm2 grid spacing.
Increasing the area to be surveyed requires optics with

wider angle of view (thus greater demagnification of the
image) resulting in worsening the detection limits.
The amount of the largest distortion of the reflecting

surface that can be measured is determined by the
maximum centroid movement of a light dot without
leaving its sub-cell. In out experimental conditions, this
amounts to a maximum slope error of �1000 mrad.
Slit: 0.6x6 mm
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e X-ray direction is from the left. On the top, the dot arrays represent the

dot is shown with a line. DX and DY are the X and Y components of the

e crystal. On the bottom, the calculated heat-bump surfaces are shown.

cale is exaggerated in the vertical direction.
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3. Experimental results

In Fig. 2, on the top panel, the slope error vector map is
shown (actual screen dumps from Centroid) and below is
the reconstructed 3-D surface of the crystal showing the
heat bump for three beam defining slit sizes at 51 tilt angle.
The inset in the slope error vector map explains the
meaning of the individual slope vectors. The nominal
power impinging the Si crystal at slit sizes (verti-
cal� horizontal) of 0.3� 3, 0.3� 0.6 and 0.6� 6mm2 was
15.2, 30.3 and 60.3W, respectively, as calculated using
XOP taking into account the wiggler parameters, X-ray
absorption carbon filters, Beryllium windows and experi-
mental geometry. The vertical scales for the 3-D plots
are the same for all slit sizes so it is easier to see the changes
in the bump surface. The height of the bump, as
expected, increases with the deposited total power. The
heat-bump surface looks quite dramatic, especially with
Fig. 3. Heat-bump height and slope errors are shown along the ‘‘crest’’ of the

errors curves, the measured data (black) is compared with the slope errors re

method (red).
the slits fully open. Note however, displacement is a
few hundred nanometers over a distance of tens of
millimeters.
Another feature of the plots is that the heat-bump profile

seems to be tilted (asymmetrical) as the deposited beam
power increases. This behavior is related to the following:
(1) the irradiated area of the crystal is off-center of the
crystal making the deposited power distribution asymme-
trical. (2) We obtain slope error vector maps from the shift
of the position of the dots assuming the conversion factor
to be constant (an average) for each light dot. This is not
quite correct: light paths for the dots at the left-most versus
the right-most light dots are slightly different. Assuming
the conversion to be constant introduces a systematic error
in the slope error vector maps, thus introducing some
distortion of the heat-bump profile. Our measurements
show that the maximum variation of the calibration factor
is �4%.
heat bump in X and Y directions for beam incidence at 51. For the slope

-calculated from the reconstructed heat-bump surfaces using the Poisson
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In Figs. 3 and 4, the heat-bump height and slope error
along the ‘‘crest’’ of the heat bump (in the direction and
perpendicular to the beam) are shown for 51 and 141
incident angles, respectively. The dotted vertical lines
represent the edges of the footprint of the X-ray beam
(the X-ray beam hits the crystal only in the area between
these lines). The locations of extreme values for the slope
error are quite close to the edges of the radiated area. This
is what one would expect: those are the locations where the
heat gradient should be the greatest.

In Fig. 5, the effect of crystal tilt at fixed slit size on the
heat-bumps formation is shown. The slit size is 0.6� 6mm2

(vertical by horizontal) and the tilts are 51 and 141. On the
top the screen dump of the slope error vector map, on the
bottom slope the reconstructed 3-D surface and contour
plots are shown. The small rectangles on the contour plots
show the footprint of the beam. The surface plots are
shifted vertically for the better view of the contour plots. It
Fig. 4. Heat-bump height and slope errors are shown along the ‘‘crest’’ of the

errors curves, the measured data (black) is compared with the slope errors re

method (red).
is obvious from this figure that the heat-bump effect is
especially severe at large tilts corresponding to low energy
settings of the monochromator.
There are two slope error curves shown in Figs. 3 and 4:

in black the slope error values as measured and in red as re-
calculated from the reconstructed surface. In an ideal world,
these two slope error curves would be identical. The basic
difference between the measured (black) and the re-
calculated slope errors is that the measured slope error
curves looks noisier that the calculated ones. We have not
used any smoothing procedures at the heat-bump surface
calculations. The experimental procedure (as any experi-
mental procedure would) introduces some error or noise in
the slope error vector map data. The errors or noise in slope
vector map data will result in a non-zero curl(s) distorting
the integral, thus the reconstructed surface. As shown in the
next section, the mathematical procedure used to calculate
the surface minimizes certain experimental errors.
heat bump in X and Y directions for beam incidence at 141. For the slope

-calculated from the reconstructed heat-bump surfaces using the Poisson
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Fig. 5. On the top: slope error maps as measured; below: reconstructed heat-bump surfaces calculated form the measured slope error maps with contour

plots of the heat-bump surfaces for two angles of beam incidence (51 and 141) with the same slit size. The rectangles on the contour plot represent the beam

footprint. The surfaces are shifted up to better reveal the contour plots.
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4. Surface profile reconstruction

Reconstruction of the surface from gradient fields is a
representative of the well-known problem of ‘‘shape from
shading’’ [6]. Ideally, the reconstruction of the surface from
the gradient field must not depend on the choice of the
integration path. The primary difficulty arises from the fact
that experimentally obtained gradient fields rarely satisfy
the so-called integrability requirement (zero curl or
independence of the surface reconstruction from the
integration path), and some sort of correction to the
gradients is needed in order to rectify the situation.

Let p(x,y) and q(x,y) be the gradient field (the x and y

components of slope vector field, respectively) obtained in
the experiment. One seeks to reconstruct the surface h(x,y)
from these gradients. Let {hx,hy} denote the x and y

components of gradient vector field of the surface h(x,y),
which naturally satisfies integrability requirement. Ideally,
{hx,hy} ¼ {p,q}. In reality, however, due to measurement
errors curl(p,q) is not zero, therefore, a correction {ex,ey}
to the gradients {p,q} is sought so that {hx,hy} ¼ {p,q}
+{ex,ey}. The most straightforward approach, and the one
that performs well in the presence of a Gaussian noise, is to
minimize the least square error function J(h) ¼R R

((hx�p)2+(hy�q)2) dx dy ¼
R R

(ex
2+ey

2) dxdy. The Eu-
ler–Lagrange equation leads to the Poisson equation for
h(x,y), which results in minimization of the error function
J(h) [7]:

r2 � h ¼ divðp; qÞ. (1)

For p, q, and subsequently h defined on a grid Nx�Ny,
Eq. (1) needs to be expressed in the matrix form

L� h ¼ r. (2)

Here, r ¼ div(p,q) is a column vector of the size NxNy

formed by using finite differences of the two neighboring
grids for each point, h is a column vector representing the
surface h(x,y) on the grid also having the size NxNy, and L

is a square matrix NxNy�NxNy that corresponds to the
Laplacian operator. L is represented by the kernel [0 1 0;
1 4 1; 0 1 0] (an operator for 2nd-order differentiation for
two-dimensional 2-D space) and is modified at the
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Fig. 6. (a) Initial theoretical surface. (b) Surface reconstruction by solving Poisson equation after 10% of max(|grad h|) noise was added to the gradient

field of (a). The RMS error of reconstructed surface is 2.7%. (c) Surface reconstruction via direct integration of x-component of the gradient. RMS error

of reconstructed surface is 12.9% of max(|h|). (d) RMS error in reconstructed surface by direct integration (dashed line) and solving the Poisson equation

(solid line) versus sigma of the added Gaussian noise of max(|grad h|).
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boundaries in accordance with the Neumann boundary
condition since the only information available on the
surface boundary is the gradient. Finding the reconstructed
surface is now reduced to matrix inversion L�1 so that the
reconstructed surface is obtained by h ¼ L�1r. Pure
Neumann boundary conditions (i.e. only gradient is known
at all boundaries) result in singularity of the matrix L. This
singularity can be removed by eliminating an arbitrary row
and column in L (which is equivalent to fixing a single
element of h to zero) followed by usual methods of matrix
inversion.

In Fig. 6, we illustrate the performance of this procedure
in the presence of Gaussian noise. A scaled parametric
Gaussian of two variables (Matlab’s peaks function [9])
was used as a model surface shown in Fig. 6(a). We have
created the surface’s gradient field, grad(h), and added 10%
r.m.s. random Gaussian noise to simulate errors occurring
in the real experimental environment. Next, we used the
Poisson method to reconstruct the surface from the noisy
gradient field (Fig. 6(b)). The r.m.s. error of reconstructed
surface is only 2.7%. On the other hand, when the surface
reconstruction is done via direct integration along x

(shown in Fig. 6(c)) of the r.m.s. error of reconstructed
surface is 12.9% of max(|h|). The comparison between
r.m.s. errors of reconstructed surface by direct integration
versus using the Poisson equation as a function of the
added Gaussian noise of is shown in Fig. 6(c).
In order to test the surface reconstruction method we

reconstructed a flat reflecting surface before and after
80 mrad tilt shown in Fig. 7. The light dot grid array size
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Fig. 7. Reconstructed flat mirror surfaces before and after 80 micro-Radian tilt of the crystal.
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was 33� 27 dots and the corresponding mirror surface area
was 29� 22mm2. The test showed that the tilted surface is
correctly reconstructed.

There are more sophisticated algorithms of surface
reconstruction [8] that stabilize the reconstructed surface
in the presence of large outliers in the gradient field errors.
Surface reconstruction using the Poisson equation (1),
however, provides the optimum solution when the error of
the measured gradient fields is represented by the simple
Gaussian noise.

5. Conclusions

We have demonstrated a new in situ method to measure
heat bumps in Si single crystals used in X-ray mono-
chromators. The method is based upon the idea that a
distorted reflecting surface will create a distorted image. By
measuring the changes in an originally evenly spaced dot
array as a result of the distortion of the reflecting surface
gives us the gradient vector map of the surface. In order to
recover a 3-D surface from the experimentally determined
gradient map turned out to be more involved than using a
simple integration procedure. As we have shown the
measurement errors of the gradient map translate to quite
large errors in the reconstructed surface when simple linear
integration is used. On the other hand, when more
sophisticated mathematical method based on matrix
algebra used to reconstruct the surface the propagation
of experimental errors will be minimized. Using the
Poisson method with the Neumann boundary conditions
the shape of the surface of the reflecting crystal can be
reconstructed. The technique will be used for the detailed
analysis of the heat-bump formation in crystal and
multilayer optics with the goal to optimize optics perfor-
mance in terms of flux and brilliance preservation.
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