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Here we compute the ion distribution produced by an electron beam when ion-clearing electrodes are
installed. This ion density is established as an equilibrium between gas ionization and ion clearing. The
transverse ion distributions are shown to strongly peak in the beam’s center, producing very nonlinear
forces on the electron beam. We will analyze perturbations to the beam properties by these nonlinear
fields. To obtain reasonable simulation speeds, we develop fast algorithms that take advantage of adiabatic
invariants and scaling properties of Maxwell’s equations and the Lorentz force. Our results are very
relevant for high current energy recovery linacs, where ions are produced relatively quickly, and where
clearing gaps in the electron beam cannot easily be used for ion elimination. The examples in this paper
therefore use parameters of the Cornell Energy Recovery Linac project. For simplicity we only consider
the case of a circular electron beam of changing diameter. However, we parametrize this model to
approximate nonround beams well. We find suitable places for clearing electrodes and compute the
equilibrium ion density and its effect on electron-emittance growth and halo development. We find that it
is not sufficient to place clearing electrodes only at the minimum of the electron beam potential where ions
are accumulated.
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I. INTRODUCTION

Several processes can contribute to the production of
ions in the vicinity of accelerated electron beams [1].
These positively charged ions are attracted to the negative
beam. Antiproton accumulation systems have suffered
under the field from accumulated ions [2,3], and so have
electron beams [4,5].

Ions can damage the beam in various ways. First, they
produce a focusing field that changes in a very nonlinear
way with an electron’s distance from the beam’s center.
The resulting nonlinear motion can increase the beam
emittances "x and "y, can lead to particle loss, and can
produce a halo around the beam. The emittances describe
the areas in �x; px� and �y; py� phase space that a beam of
accelerated particles occupies. Accelerators that should
produce horizontally (x) and vertically (y) narrow beams
therefore need to avoid an increase in emittances. Second,
the ion distribution oscillates within the electron beam,
while the electrons are attracted to the ion distribution.
This system of coupled oscillators can become unstable
[6–9] and lead to large transverse beam oscillation ampli-
tudes or to an increase of the apparent transverse beam
size.

It is therefore important to reduce the density of ions in
the vicinity of the beam to a tolerable amount. Different
accelerators achieve this differently. Storage rings typi-
cally use ion-clearing gaps. These are short gaps in the
filling pattern that lead to an absence of focusing forces for
the ions every time this gap has traveled around the ring.
When the gap length and frequency are chosen suitably, the
ions get overfocused, which lets the ions oscillate with

increasing amplitude until they have moved outside the
beam region. The length of the beam-filled region is typi-
cally a few microseconds long for a large accelerator,
whereas the gap is typically shorter than 1 �s. In pulsed
linacs, the gaps are often much longer and allow ions to
drift out of the beam region.

In rings with coasting beams, there is no ion-clearing
gap, and obviously the beam cannot be turned off regularly.
Similarly, in energy recovery linacs (ERLs) [1], where the
beam’s energy is dumped in rf cavities and is immediately
used to accelerate new electrons, one cannot easily turn off
the beam (because this would interrupt the ERL process)
and one can also not easily introduce short gaps in the
beam (because this would disrupt the gun or the linac that
injects large currents into the ERL). In both of these cases,
ion-clearing electrodes may have to be used [10,11].

The electron beam diameter varies along the accelerator,
and this variation produces longitudinal forces, guiding
ions to a location where the electron density is relatively
large, typically close to the waists of the electron beam.
Clearing electrodes are placed along the beam line at such
places of ion accumulation.

Because these longitudinal forces are relatively weak, it
typically takes a few milliseconds for an ion to move from
the place where it is produced to an ion-clearing electrode a
few meters down the beam line. During this time, new ions
are created, leading to a remnant equilibrium ion density
that establishes itself in the presence of clearing electrodes.
Creating a number of ions per length as large as the number
of electrons per length typically takes only a few seconds,
even for very good vacuum in the nTorr range [1]. Because
the motion to clearing electrodes that are spaced many
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meters apart takes several milliseconds, such electrodes
tend to produce a linear ion density that is in the order of
about one part in a thousand of the linear charge density in
the beam.

Computing an equilibrium density is typically very time
consuming. Here we show how to use scaling properties of
the Maxwell equations and the Lorentz force, as well as the
adiabatic invariance of the action integral, to compute the
equilibrium ion density very efficiently.

We subsequently apply this technique to analyze the
Cornell ERL project [12]. We investigate whether the
remnant ion density after placement of clearing electrodes
can lead to any of the discussed damages to the electron
beam, so that additional clearing electrodes would have to
be installed. We assume the parameters listed in Table I,
where the ionization cross section is taken from [13] for
5 GeV. To be conservative we used the high energy cross
section for all energies, even though for lower energies the
cross section is up to 40% smaller. The gas density of 3�
1013 m�3 corresponds to a pressure of 1 nTorr for room
temperature sections of the accelerator. The emittances are
obtained from the normalized "nx, "ny with the relativistic
� by �x � "nx=�.

II. COMPUTATION OF THE ION EQUILIBRIUM

A. The 3D beam-beam force

For a rotationally symmetric electron beam, the density
is given by

 �e�r; s� � �
1

2���s�2
e�fr

2=�2��s�2�g: (1)

where � is the linear particle density. With Gauss’ law, the
transverse velocity kick on a singly charged, nonrelativistic
ion becomes

 �vr � �
2Ncrp
Ar

�
1� exp

�
�r2

2�2

��
; (2)

where � is the rms width of the electron beam profile, r is
the distance from the beam centerline, N the number of
electrons in the bunch, rp the classical proton radius, and A

the atomic weight of the ion. For nonround Gaussian
electron beams, the transverse kick of the ion can be
evaluated analytically in terms of complex error functions
[14].

If the size of the electron beam changes as a function of
s, the ion will also experience a longitudinal force from the
passing bunch. As shown in Fig. 1, the force that attracts an
ion to a quickly passing electron is perpendicular to the
electron’s trajectory. If the electron beam is converging, the
average force on the ion is therefore in the forward direc-
tion. Linearizing in the slopes of the electron trajectories,
this longitudinal force can be expressed as a function of
transverse force components and beam parameters [[15],
Eq. (5)]. For a section with zero dispersion, i.e., where the
beam orbit is independent of the beam’s energy, we obtain

 �vs � ��x"x
@�vx
@x
� �y"y

@�vy
@y

: (3)

The velocity changes that are produced by one bunch
passage can be seen in Fig. 2. Here we used the values of
Table I for top energy and Twiss parameters of 	x � 	y �
2 m, �x � �y � 1, where 	x=y describe the size of the
electron beam and �x=y describe its convergence [16].

In our restriction to rotationally symmetric beams, we
have � � �x � �y, " � "x � "y, and the longitudinal
kick becomes

 �vs � ��"
�
@�vx
@x
�
@�vy
@y

�
: (4)

Note that we keep the x=y notation even though the beam is
rotationally symmetric, because we need to distinguish the
direction of ion oscillation and the one transverse to it. For
the beam parameters we studied, the longitudinal kick is
typically 5 orders of magnitude weaker than the transverse
kick, as shown in Fig. 2. In the special case of rotational
symmetry, the longitudinal kick on the ion will be in the
same direction for all positions. This is not true in the

TABLE I. Parameters of the Cornell ERL used for the ex-
amples in this paper.

Normalized emittances "nx � "ny 0:3� 10�6 m

Energy spread �
 2� 10�4

Electron current I 0.1 A
Bunch charge Q 77 pC
Injected energy Ein 10 MeV
Top energy Etop 5 GeV
Dominant ion abundance H� 98%
Ionization cross section �col 3:8� 10�23 m2

Gas density for warm sections pline 3� 1013 m�3

Gas density for cryogenic linac plinac 3� 1011 m�3

FIG. 1. Impulse transmitted on an ion from a passing beam
electron [15].
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general case; if �x and �y have different signs, the kick
direction can depend on the distance from the centerline
[15].

B. Adiabatic invariants of ion motion

In a brute force simulation, the state of each ion is
characterized by its x and s position, as well as by the
velocities in both directions. Every kick has to be calcu-
lated separately from the beam-beam force, which is as-
sumed to be a function of the x and s position. Such a
simulation would be very inefficient because there are two
different time scales: A large number of kicks is required to
resolve the sharply focused transverse ion motion, but the
longitudinal motion hardly changes in a single oscillation.
It is therefore not possible to simulate the motion of a
realistic number of ions in this way.

The period of transverse oscillations in the beam’s po-
tential [17–19] depends on the average beam density, and
for typical high-brightness beam parameters as those of
Table I it is of the order of several to tens of bunch cross-
ings. During one transverse oscillation, the longitudinal
position s of the ion changes typically only by a fraction
of a millimeter even at the largest possible ion speeds.

Ions thus oscillate in a potential that slowly changes over
many periods. Because of this, an ion’s action integral over
one oscillation period

 Jx � m
I
vxdx � Jy � J (5)

is an adiabatic invariant of the motion. This can be used to
drastically speed up the simulation.

In this improved simulation, the state of the ion is now
described by its longitudinal position s, its longitudinal
speed vs, and its action integral J. For each position s, J is
a measure of the transverse oscillation amplitude a, be-

cause the action increases with a. This can most easily be
seen in �x; px� phase space where the graph �x�t�; px�t�� for
any oscillation is a closed curve, and J is the enclosed area.
A closed curve that starts with a larger oscillation ampli-
tude has to completely enclose one that starts with a
smaller amplitude because different phase-space trajecto-
ries cannot cross. Solving the motion in �J; s� rather than in
�x; s� coordinates has two advantages: (1) The degrees of
freedom are reduced from 2 to 1. (2) Because �vs changes
much slower than �vx, the integration steps can be vastly
increased, typically by about a factor of 10 000. If the
density at s is to be computed, it is not enough to know
the action at s, but one oscillation is sufficient to compute
the density contribution of particles with action J.

The longitudinal acceleration averaged over one oscil-
lation is given by the time average over individual kicks

 _v s � h�vsi � ��"
�
@�vx
@x
�
@�vy
@y

�
;

where

 h�vsi �
1

T

X
osc

�vs: (6)

Calculating this time average again and again for each ion
is computationally demanding and wasteful. Instead, we
precompute a table of possible values of this time average
for many beam sizes � and amplitudes a of the oscillation.

The program was further accelerated by noting that the
time averaged kick as a function of J can be calculated for
a typical standard beam size and then rescaled for regions
with other beam sizes.

To derive this scaling behavior, we use a general scaling
theorem for Maxwell’s equations and the Lorentz force. If
~E� ~x; t�, ~B� ~x; t�, �� ~x; t�, and ~j� ~x; t� satisfy Maxwell’s equa-
tion, and a charged particle with massm and trajectory ~r�t�
satisfies the Lorentz force equation, then the following
scaled quantities also satisfy these equations:
 

~Escaled� ~x; t� � �2 ~E��~x; �t�

~Bscaled� ~x; t� � �2 ~B��~x; �t�

�scaled� ~x; t� � �3���~x; �t�

~jscaled� ~x; t� � �3 ~j��~x; �t�

~rscaled�t� � ��1 ~r��t�

mscaled � �m:

The effect of this scaling transformation is to reduce spatial
distances and time intervals by a factor �, so that velocities
remain unchanged. Also, the charge and current densities
are increased by a factor �3, so that the total charge in a
scaled volume remains constant.

We now want to find out how the spatial derivative of the
transverse kicks changes when the transverse scale of the
beam is reduced by a factor �. If the rotationally symmetric

FIG. 2. (Color) Transverse (top) and longitudinal (bottom) kick
component in m=s vs transverse ion position in units of the rms
beam size.
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beam produces a field ~E�x; s�, the 3D scaled field would be
�2 ~E��x; �s�. However, only the transverse scale changes
from one beam width to another, and the longitudinal scale
stays the same, signified by the unchanged line density.
The charge within a 3D scaled volume is therefore smaller
by 1=�, and the field after transverse scaling is therefore
~E1=��x; s� � � ~E��x; s�.

The transverse scaling transformation therefore gives

 

�
@�vx
@x

�
1=�
�

�
q
m

�
ion

@
@x

Z
~E1=��x; ct�dt

�

�
q
m

�
ion

@
@x

1

c

Z
� ~E��x; s�ds

� �2

�
q
m

�
ion

@
@~x

Z
~E�~x; ct�dt � �2

�
@�vx
@x

�
:

From this, we see that a rescaling of the two relevant length
scales � and a has the effect

 

@�vx
@x

�
a
�
;
�
�

�
� �2 @�vx

@x
�a; ��: (7)

This is true for both derivatives, so that the time average of
their sum multiplied by �2 is only a function of a=�,

 �2

�
@�vx
@x
�
@�vy
@y

�
� g�a=��: (8)

Our goal is to express this time average as a function of the
beam size � and the action integral J, so we also have to
find the functional dependence of J on a and �. As noted
above, the electric field at a location where the beam size is
reduced by a factor � is scaled in the transverse to
�E��x; s�. To obtain scaled transverse ion motion, we do
not change the mass of the ions, i.e. ms � m. The trans-
verse velocity is then not changed by transverse scaling,
and according to Eq. (5), the action integral is reduced by a
factor �. From this we conclude

 J�a;�� � �J
�
a
�
;
�
�

�
: (9)

Combining this result with the above analysis, we finally
find

 

�
@�vx
@x
�
@�vy
@y

�
�

1

�2 f�J=��: (10)

The function f�J=�� describes the longitudinal force aver-
aged over one ion oscillation, and can therefore be visual-
ized by Fig. 2 (bottom). To speed up the program, a lookup
table for the function f is therefore computed for a stan-
dard beam size � and a range of action integrals J. The
longitudinal acceleration of the ions is then given by

 _v s � �
�"

�2 f�J=��: (11)

C. Fast ion propagation to equilibrium

The toy model for our ion simulations consists of a field-
free beam region of variable length L, so that the
	-function is given by

 	�s� � 		
�

1�
�
s
		

�
2
�

(12)

with waist at s � 0. We then simulate the creation of ions
in the beam pipe through ionization processes. The ioniza-
tion rate in a given volume �V is given by

 

�N
�t�V

� �e�g�colc; (13)

where �e is the local particle density of the electrons as
given by the Gaussian beam profile �g. By integrating over
the transverse directions, one obtains an equation for the
number of ions created in a length L of the beam

 

�N
�t�L

�
Ibeam

e
�g�col: (14)

From this it is clear that ions are created with equal rate at
all locations along the beam. Under the influence of the
longitudinal beam force, the ions will then slowly propa-
gate to the point with minimal potential.

In our simulation, we assume that clearing electrodes
have been placed at the waist, so that ions crossing the s �
0 line are removed. An equilibrium situation is reached
when an equal number of ions are produced and removed
during a given time interval. The time needed to reach this
equilibrium depends on the length of the beam pipe and the
steepness of the longitudinal potential. Typical values in
our simulation are 106 to 108 bunch separations of 0.77 ns.

As a first example, we show a L � 20 m long part of the
beam with a waist of 		 � 1 m at its center. The longitu-
dinal equilibrium ion distribution for 10 m up to the waist
is shown in Fig. 3. There is a sharp increase in the ion

FIG. 3. (Color) Longitudinal ion distribution in the steady state
for the 20 m beam model.
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density near the electrode at s � 0 that is caused by two
effects. The first is that ions which have been created at all
points of the beam pass through this region and contribute
to the density. The second effect is that the �-function
becomes smaller near the waist, so that ions which are
created there experience a weaker longitudinal force and
move more slowly to the electrode.

The transverse ion distribution can be characterized by
its standard deviation, which is plotted in Fig. 4. Two
features of this graph can be explained easily. (a) The
rms width of the ions at the start of the section (at s �
�10 m) is smaller than that of the electron beam, even
though ions are created in proportion to the Gaussian
electron distribution. The reason is that ions start to oscil-
late within the electron beam after their creation and there-
fore contribute to the density around zero, no matter where
they were created. Such distributions have first been com-
puted numerically in [20,21] and analytically in [22].
(b) The ion distribution contracts less than the electron
beam. This can be explained by the adiabatic invariance
and the scaling of the action integral. Ions that are created
with an action J in regions where the electron beam is wide
will still have that action by the time they reach a part of the
beam that is narrower by a factor �. At that position, their
oscillation amplitude will have increased relative to the
beam size, because the action for a proportionally reduced
oscillation amplitude would be reduced by a factor �
according to Eq. (9).

The density profile of the transverse ion distribution at
s � 
1 m near the clearing electrode is shown in Fig. 5.
Near the beam axis, the density diverges approximately as
1=r, so that it is not appropriate to fit the ion distribution to
a Gaussian.

For a rotationally symmetric particle density, the num-
ber of ions created in a length ds and in a radius element dr
per time is

 

_n�r; s�drds � c�col�g�e�r; s�2�rdrds: (15)

Subsequent to the creation of an ion at �r0; s0�, it travels
along the beam line to s � S�t; r0; s0� and oscillates
through the electron beam to R�s; r0; s0�. Ions created
between sm and s can contribute to the distribution at s,
and a ring element drds with radius r therefore contains dn
ions,
 

dn�r; s� �
Z s

sm

Z 1
0

Z 1
�1

_n�r0; s0�dtdr0ds0

� 
�r� R�s; r0; s0��dr
�s� S�t; r0; s0��ds

�
Z s

sm

_n�r0; s0�

j@r0
R�s; r0; s0�j

ds0drds

j _S�t; r0; s0�j
;

where r0 is the radius at s0 that leads to r when the ion
arrives at s and t is the time at which it arrives, i.e.
r0�s0; r; s� and t�s0; r; s�,

 

dn
drds

�r; s� �
Z s

sm

_n�r0; s0�

j _S�t; r0; s0�j

��������@r0

@r

��������ds0: (16)

The number of particles per radius interval dn
drds �r� is

clearly not zero for r � 0, and the density close to zero
therefore has a singularity of the form

 �e�r� �
1

2�r
dn

drds
�0�: (17)

Because of repulsive forces between the ions, the density
at the origin cannot diverge, and we therefore estimate the
radius rm below which these forces become larger than the
forces from the electron beam. It will turn out that this
radius is a very small fraction of the electron beam’s width,
so that deviation from the 1=r density can be neglected.

We assume that the region with radius ri in which the ion
density can be approximated as �ion �

A
r contains most of

the charge. At some radius, the density has to fall off faster
than 1=r to integrate to a finite value. Our assumption

FIG. 5. (Color) Ion transverse density profile at s � 
1 m in the
20 m beam model and comparison with a 1=r distribution.FIG. 4. (Color) Beam (solid line) and ion (� ) transverse stan-

dard deviations as a function of longitudinal position in the 20 m
beam model.
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therefore leads to an overestimate of the ion force.
Integrating �ion up to ri leads to the ion line density
2�Ari � �ion.

The region that contains most of the charge has a radius
ri that is usually smaller than the rms width of the electron
beam. Only if ions were created in a very wide region of the
beam, and it were to be focused down to an extremely
small radius, could the ion width be much larger than the
electron width. However, such extreme focusing does not
occur in most beams, especially not in the Cornell ERL.

Gauss’ law within ri leads to the constant radial electric
field

 Eion �
�ion

2��0ri
: (18)

The radial electric field of the electron beam has already
been used in Eq. (2) and for radii much smaller than �
simplifies to Ee �

�r
4��0�2 . We can now find the radius R for

which the ion field is as large as the electron field, R �

��ion

�
2�
ri

. As long as the number of ions per length is much
smaller than the number of electrons per length, the 1=r
scaling of the ion density is therefore correct and not
altered by the ion forces in by far the largest part of the
beam.

III. ELECTRON MOTION IN THE ION POTENTIAL

A. Electron propagation

In the center of the beam, the change of the ion field
strength with radius approaches zero, indicating that the
ion distribution has a characteristic close to 1=r as speci-
fied in Eq. (18) and shown in Fig. 6. To investigate the
strength of the resulting beam distortion, we simulated the
propagation of a representative set of beam electrons
through the ion field. Our simulation was set up to include

a piece of the beam pipe of length L, with the clearing
electrode and the waist of the beam placed in the center.

We model the beam by propagating 5000 macroparticles
by a first order integrator with variable time step. The
initial electron distribution is determined by random beta-
tron amplitudes Jx and phases �x with the density distri-
bution

 ��Jx;�x� �
1

2�"
e�Jx=": (19)

We also investigated the effect of the beam traversing
the region of length L several times, which could lead to
the buildup of damaging resonances. For this study, the
linear optics has to be made periodic after crossing the
field-free region. This can be accomplished by including a
thin half-quad with the transfer matrix

 Mq �
1 0

�kl=2 1

� �
(20)

before and after each run through the ion field. The
�-function is �� � 0 before and �� � 	kl=2 after the
thin quadrupole. Simultaneously, this �-function must cor-
respond to that of a drift, i.e. �� �

L
2		 . Therefore,

 kl=2 �
L

2			
�

L=2

�		�2 � �L=2�2
: (21)

The simulation of the electron motion is implemented
with a dynamical time step proportional to the distance
from the beam axis, so that the effects of the strong field
near the centerline are accounted for accurately.

As a worst case scenario, we simulated two drift regions
with 200 and 100 m length and a beam waist of 		 �
100 m at the center in both cases. The final phase-space

FIG. 6. (Color) Electric field produced by the ions at s � 
1 m
in the 20 m beam model. Top and bottom show the same field on
different transverse length scales.

VIDEO 1. Electron beam phase-space distribution after trans-
versing the 200 m ion field with 		 � 100 m at its center. Dark-
red �: phase space in a free drift; light-green �: phase space for
motion through the ion field.
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distributions with and without the ion field are shown in
Videos 1 and 2.

While passing through the ion field once, the emittance
increases from 30.6 to 53.1 pm in the 100 m field and to
50.7 pm in the 200 m field, as can be seen in Fig. 7.

B. Ion-force driven emittance growth for
the Cornell ERL

The previous two examples show that sections of only a
few times 10 meters between clearing electrodes can pro-
duce intolerable emittance growth if the beta function is
large, because in that case the beam is not very divergent
and the longitudinal force that clears ions is consequently
small. It therefore has to be tested whether the optics in the
Cornell ERL provides fast enough ion motion to clearing
electrodes, so that emittance growth is limited.

Because ions travel to the minima of the electrostatic
potential, a clearing electrode has to be located at every
such minimum. We therefore first calculate the potential in
the beam’s center with the approximate equation [18]

 � � �
I

2��0c

�
1

2
� log

R
����
�
p������������������������������������

"nx	x � �x�
�
2

p
�

�������������
"ny	y

p �
;

(22)

for a round beam pipe with radius R and a beam with the
relativistic factor �. This equation assumes a uniform
transverse density distribution. Figure 8 shows the relevant
beam optics for the Cornell ERL and Fig. 9 shows the
resulting potential in the center of the beam.

To find a round beam approximation suitable to our
simulations, we first look at the minima of this potential

FIG. 8. (Color) Beam optics for the Cornell ERL. Top to bottom:
horizontal 	- function, vertical 	-function, and horizontal dis-
persion.

VIDEO 2. Electron beam phase-space distribution after trans-
versing the 100 m ion field with 		 � 100 m at its center. Dark-
red �: phase space in a free drift; light-green �: phase space for
motion through the ion field.

FIG. 7. (Color) Emittance increase while transversing the 100 m
(thick-dark-red) and 200 m (thin-light-green) ion fields (hori-
zontal axis in percent of distance L).

FIG. 9. (Color) Top: Approximate longitudinal beam potential
for the Cornell ERL. Bottom: A section of the ERL illustrating
the approximation of the beam’s potential (thick dark red) by a
round-beam model (thin light green).
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and calculate the 	-function that would give the same
potential at those locations in the case of a round beam,

 		 �
R2�

4"n exp�4���0c=I� 1�
: (23)

We can then define a round beam approximation for the
entire ERL lattice by using a free drift from one potential
maximum to the next with 	�s� from Eq. (12). The longi-
tudinal ion velocities near the center of the beam (where
most of the ions are located) depend only on this potential
gradient. As will be demonstrated by a comparison with
particle tracking in Figs. 11 and 12, ions that are not in the
center have the same velocity to a good approximation.
This clearing speed determines the linear ion density also
for nonround beams, and our round beam model should
therefore be a good approximation.

The number of ions created per unit length at the longi-
tudinal position s0 during a time interval t� t0 is given by

 

dNt�t0
ds0

� �t� t0�
dn

dsdt

��������s0

; (24)

with

 

dn
dsdt

��������s0

�
�I
e
�n�s0�; (25)

where the number density of the residual gas is �n, the
ionization cross section is �, and e is the elementary
charge. In the equilibrium state this is the same as the
rate of ions per unit length originating from s0 passing
through every surface perpendicular to the beam axis,
provided that the surface is located downstream from s0.

During a time interval t� t0, the total number of ions
per unit interval from s0 crossing the surface is given by

 Ns0
�t� � �t� t0��s0

�s�vs0
�s�; (26)

where �s0
�s� is the local linear density of ions from s0 per

unit length at the point s. Solving for this quantity, we
obtain

 �s0
�s� �

1

vs0
�s�

dn
dsdt

��������s0

; (27)

where the velocity of ions from s0 at s is given by

 vs0
�s� �

����������������������������������������
2e
mion
�V�s0� � V�s��

s
: (28)

Integrating over the relevant upstream points from the
nearest potential maximum to s yields the total local ion
density at s:

 ��s� �
Z s

smax

�s0
�s�ds0: (29)

Using this method, and assuming that the residual gas
density in the linac sections is reduced by a factor 100 as
specified in Table I, we find the linear ion densities for the
Cornell ERL shown in Fig. 10.

The two sections of the ERL with the largest linear ion
densities are located at s � 960 m (section A) and at s �
1760 m (section B). We therefore studied these sections in
detail by performing numerical ion and beam simulations.
The resulting equilibrium ion densities can be found in
Figs. 11 and 12. The figures demonstrate that our analytical
approximation agrees well with the simulations even
though the approximation assumes that all ions are in the
center of the electron beam. We checked that the agree-
ment becomes perfect in this case.

To reduce the impact of the two sections, additional
clearing electrodes can be placed between the maximum
and minimum of the potential. We find that, by including
one extra electrode, the emittance increase can be reduced
from 1.04 to 0.46 pm for section A, and from 1.55 to
0.71 pm for section B.

To get a better estimate of the ion effects in the full ERL,
we also simulated the ion distribution in a 34 m long region
around s � 1530 m, which corresponds to one of the
medium high peaks in Fig. 10. Sending the beam through

FIG. 11. (Color) Simulated and analytically approximated linear
ion densities near s � 960 m in the Cornell ERL.

FIG. 10. (Color) Estimate of the linear ion density at the Cornell
ERL for a round beam approximation and clearing electrodes at
the minima of the linear potential.
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this section 1000 times results in the phase-space distribu-
tion in Video 3. We find that, after 1000 passes through the
ion field, 6.2% of the beam electrons have left the main
bunch and have migrated to the four separated islands in
phase space. The electronic version of this paper contains
an animation of this development of the beam halo.

C. Outlook for nonround systems

While we have argued that our circular beam model
should be quite accurate, it would be good to extend our
simulations to nonround beams. However, in that case the
ion propagation cannot be simulated in the same way using
adiabatic invariants. Two independent invariant quantities
would be needed to account for oscillations in the x and y
directions. The problem is that the action integrals cannot
be defined as the area in a phase space plane, because the
ion motion is generally not a simple superposition of two

independent periodic oscillations in phase-space planes.
An example of such phase-space motion can be seen in
Fig. 13.

IV. CONCLUSION

We computed the ion distribution produced by an elec-
tron beam when ion-clearing electrodes are installed. The
transverse ion distributions are shown to strongly peak in
the beam’s center, producing very nonlinear forces on the
electron beam. These can produce strong perturbations of
beam properties leading to emittance growth and halo
development. These simulations rely on fast algorithms
that take advantage of adiabatic invariants and scaling
properties of Maxwell’s equations and the Lorentz force.

Our results are very relevant for high current energy
recovery linacs, where ions are produced relatively
quickly, and where clearing gaps in the electron beam
cannot easily be used for ion elimination. As an example
we used the Cornell Energy Recovery Linac project. For
simplicity, we only consider the case of a circular electron
beam of changing diameter. However, we parametrize this
model to approximate the nonround beams of the ERL
well. We found suitable places for clearing electrodes
and computed the equilibrium ion density and the
electron-emittance growth it would produce even after
installing extra clearing electrodes at the two most danger-
ous places. We also showed that the nonlinear-ion forces
would lead to a significant halo development.
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