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Abstract

The theories of beam loss and emittance growth by Tou-
schek and Intra Beam Scattering have been formulated for
beams in storage rings. It is there that these effects have
hitherto been important because of their large currents.
However, there are linear accelerators where these effects
become important when considering loss rates and radia-
tion damage. Prime examples are high current Energy Re-
covery Linacs (ERLs), managing these scattering effects
can become challenging, and not only because of the large
current, but also because the deceleration of the spent beam
increases relative energy spread and transverse oscillation
amplitudes. In this paper we describe two ways of simu-
lating particle loss by these scattering affects, both imple-
mented in Bmad. One that yields the places where scat-
tering occurs, and another that yields loss rates along the
chamber walls. Bmad includes nonlinear beam dynamics,
wake effects, and more, which allows a rather complete
propagation of scattered particle. For the example of the
ERL x-ray facility that Cornell plans to build, we demon-
strate that these capabilities are very important for design-
ing a functional radiation protection system.

INTRODUCTION

Single event intra-beam scattering (IBS) that leads to
momentum changes large enough to result in the loss of
one or both of the colliding particles is called Touschek
scattering, and particles that have been scattered to suffi-
ciently large changes in momentum to be lost are called
Touschek particles. Touschek scattering in a linear acceler-
ator is interesting because the current of lost particles can
pose a radiation hazard.

In this paper we describe tracking simulations developed
to determine beam loss by Touschek scattering in a linear
accelerator. The simulations determine the locations in a
linear accelerator where Touschek particles are generated
and where they are lost. Additionally, it determines the
halo profile due to Touschek particles anywhere along the
linac.

The development of these simulations was driven by
Cornell ERL R&D [1]. The calculations shown in this pa-
per used the Cornell ERL lattice version 3.0. The stages of
the example accelerator are shown in table 1.
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Figure 1: An example Touschek curve. Shown is the rate
at which particles are kicked above δp versus δp.

THEORY

The theory behind our simulations is Piwinski’s deriva-
tion of the Touschek effect [2]. Because of the broad range
of energies encountered in a linear accelerator, we use the
full, unapproximated, formula for the rate with which par-
ticles scatter beyond p(1 + δp),
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where τm = β2δ2
p , and the remaining parameters are de-

fined in [2]. An example plot for R(δp) is shown in shown
in Fig. 1.

The momentum aperture of an element is the maximum
relative momentum kick δp that can be introduced in the
element without the particle colliding with the beam pipe
or stopping further down the accelerator. The aperture is
defined by a negative and positive bound, [δ−p , δ+

p ].
In a ring the momentum aperture is typically considered

to be the same for every element, and δ−p = −δ+
p is as-

sumed.
However, the momentum aperture in a linear accelerator

can vary significantly from one element to the next. The
aperture has a strong dependence on energy and Twiss pa-



rameters. Due to asymmetries and nonlinearities the posi-
tive and negative bound are not symmetric. If the linac has
decelerating sections then the Touschek particles that lose
momentum can be stopped during deceleration. For exam-
ple, a −0.3% momentum change at 5 GeV imparts a −15
MeV kick to the particle. If the beam is later decelerated to
10 MeV, the scattered particle will be stopped before reach-
ing the end of the linac.

In a linac, the momentum aperture depends on where
along the beam transport the scattering occurs. And the
momentum aperture for energy gain can differ from that
for energy loss as shown in Fig. 2. Because R(δp) de-
scribes the total number of scattered particles per time,
R(δ+

p )/2 particles increase their energy beyond (p + δ+
p ),

and R(δ−p )/2 particles reduce their energy below (p− δ−p )
per time.

Our simulations are developed within the general beam
simulation library Bmad [3]. Standard Bmad subroutines
provide lattice parsing and tracking. The tracking is fully
nonlinear. The particle tracking portions of the simulations
are parallelized with PVM [4].

IMPLEMENTATION

Overview

We begin when investigating Touschek scattering by de-
termining the momentum aperture for each element in the
accelerator. Then we construct a distribution of particles
representing R(δp) outside the momentum aperture at each
optical element and track these down the accelerator until
they are lost.

Element-by-element momentum aperture

The positive and negative bounds of the momentum
aperture are determined independently. In a low emittance
linac, the physical aperture is much larger than the beam
size, so one can assume to good approximation that scat-
teredparticles originate in the center of the beam. We de-
termine δ+

p by a simple binary search for the smallest δp

for which a particle is lost. Similarly δ−p is determined.

Generation of Touschek Particles

The number of Touschek particles generated per bunch
passing for a given element is found by evaluating the pro-
duction rate R(δp) using the Twiss and beam parameters at
that element and multiplying by the time each bunch spends
in the element. Repeating this calculation for all elements
in a linac and multiplying by the charge per particle and
the bunch repitition rate produces the Touschek generation
profile.

An example is shown in Fig. 3.

Where Touschek particles are lost

To determine where the Touschek particles are lost, a
distribution of test particles representative of R(δp) is pro-
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Figure 2: Example momentum aperture from CERL lattice
version 3.0. The positive aperture is determined entirely by
beam pipe collisions. The negative aperture is dominated
by stopping during deceleration.
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Figure 3: Integral over Touschek particle generation for
CERL lattice version 3.0. εnx,y = 3.0 × 10−7 m. Bunch
charge is 77 nC and repitition rate is 1.3 GHz.

duced in the following way: The rate of scattering to above
δ+
p is evaluated. Then this scattering rate is divided by the

number of test particles we wish to track. We give each test
particle equal weight so that each represents R(δp)

N
× ∆t

Touschek particles.
Determining the kick δp for each test particle requires

Table 1: Stages of CERL lattice version 3.0 used for exam-
ple plots in this paper. Particles are injected at 0 m with 10
MeV.

Start (m) End (m) Description
0 318 acceleration to 2.5 GeV
318 490 180 degree turn around, 43 meter radius
490 808 acceleration to 5.0 GeV
808 1284 wigglers, x-ray production
1284 1889 turn around through CESR
1889 2207 wigglers, x-ray production
2207 2525 deceleration to 2.5 GeV
2525 2696 180 degree turn around, 43 meter radius
2696 3014 deceleration to 10 MeV, then dump
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Figure 4: Example plot of power deposited per meter.
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Figure 5: Example plot of current deposited per meter.

inverting R(δp). This is done with a linear interpolation
to obtain δp(R). The ith particle is generated with a mo-
mentum change of δp

(

R(δ+
p

)

N
(i − 1

2 )
)

. Building the dis-
tribution in this manner guarantees that we have many test
particles representing the interesting, high rate region, and
fewer particles in the less interesting, low rate region.

Test particles representing the distribution of Touschek
particles with δp < δ−p are produced in a corresponding

way, the ith one having δp = −δp

(

R(δ−

p
)

N
(i − 1

2 )
)

, repre-

senting R(δ+
p

)

N
× ∆t Touschek particles.

The test particles are tracked from where they are created
to where they are lost. Since the range of δp represented by
the distribution is determined by the momentum aperture,
it is guaranteed that each particle will be lost. Losses are
due to either beam pipe collisions or stopping during de-
celeration. It is recorded where a particle is lost its energy
and the momentum kick it suffered. From this data both
the current and power deposited into each element can be
calculated. The current deposited into each element is ob-
tained by multiplying the rate at which scattered particles
are deposited into the element by the charge per particle
and the bunch repitition rate.

Shown in Figs. 4 and 5 are the power and current de-
posited per meter into the CERL lattice.

Collimation and beam dump considerations

Collimators are used to control where the beam pipe col-
lisions occur. It is important to minimize the Touschek
power in the user regions of an accelerator, and also around
sensive equipment. The trajectories of the test particles are
recorded, collimators are placed where ever the amplitude
of scattered particles’ trajectories are large. Collimation of
intra-beam and residual gas scattered particles in the Cor-
nell ERL has been studied in reference [5].

The halo of IBS particles around the beam at the end
of the linac can impact the design of the dump. This halo
can be studied by adjusting the simulation to track particles
inside the momentum aperture of the machine, but outside
one sigma of the beam dimensions.

CONCLUSION

The generation and behavior of Touschek particles in a
linear accelerator can be simulated by adapting Piwinski’s
Touschek derivation. The results of these simulations can
guide the placement of collimators to minimize radiation
in the user areas and around other sensitive regions of an
accelerator. The halo of scattered particles at the end of the
linac can also be simulated and be taken into account in the
design of beam dumps.

Acknowledgments

This work is supported by Cornell University and NSF
cooperative agreement PHY-0131508.

REFERENCES

[1] G.H. Hoffstaetter, et. al., Challenges for Beams in an ERL
Extension to CESR, EPAC2008 (2008)

[2] A. Piwinski, The Touschek Effect in Strong Focusing Storage
Rings, DESY 98-179 (1998)

[3] D. Sagan, The Bmad Reference Manual,
http://www.lns.cornell.edu/ dcs/bmad/ (2008)

[4] A. Geist, et. al. PVM: A Users’ Guide, MIT Press (1994)
[5] A.B. Temnykh, Beam Losses Due to Intra-Beam And Resid-

ual Gas Scattering For Cornell’s Energy Recovery Linac,
EPAC2008 (2008)


