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Analysis of known experimental data for the boundaries of the multipactor discharge in a flat gap shows

that these data cannot be explained in the frames of a simple two-point theory. More complicated theories

include repeating impacts of the electrons on the same surface before they hit the opposite one. Here an

approach is proposed that can illustrate many of these theories: a phase map connecting the start and

arrival phases of the electrons coming to the same or opposite plate. This illustrative technique leads to a

concept of a generalized phase stability. Introduction of the generalized condition of stability helps to

understand the expanding of multipacting zones beyond the limits predicted by the simple stability

condition. The phase diagrams illustrate the phase motion when the simple condition of stability is

applicable or not applicable.
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I. INTRODUCTION

The first two-point theory of the multipactor discharge in
a flat gap [1,2] explains existence of borders of multipact-
ing bands, or zones. This theory uses an assumption intro-
duced by Gill and von Engel [3] that a parameter k equal to
the impact velocity of the primary electrons relative to the
emission velocities of secondaries is constant.

This nonphysical assumption was replaced with the
more realistic assumption of a nonzero initial velocity
not directly related to the velocity of the primary electrons
[4,5]. This velocity can fluctuate and a condition of stabil-
ity was derived for these fluctuations [4]. The stability
condition (or phase focusing) is introduced in [5] also,
not specifically for velocity deviations but for any phase
deviations. Moreover, this condition is used for an estima-
tion of the maximal charge density in a flat sheet of multi-
pacting electrons.

However, even after these publications, new papers ap-
peared [6,7] further developing the concept of the constant k.

Asymmetric back-and-force orbits expand the zones of
the multipactor; they were studied in several works [6,8].

Further, more complicated physical situations were an-
alyzed for multipacting: coaxial electrodes along with the
flat gap geometry [9], usage of biases with DC electric and
magnetic fields [9–11], the flat gap case was extended to
the rectangular waveguide geometry [12], and the rectan-
gular waveguide was compared with the wedgelike wave-
guide [13–15].

Another interesting case of the multipactor in a flat gap
is when one of the plates is a dielectric [16]. In this case the

DC bias can be caused both by negatively and positively
charging dielectric and the discharge can cease when the
dielectric is charged.
Some authors pay special attention to the properties of

the secondary electron emission taking into account not
only the value of the secondary emission yield (SEY) but
also energy distribution of primary electrons [9], the ran-
dom character of the secondary electron velocities, and
delay time of the secondary emission [8]. Influence of
the energy and impact angle dependencies of the SEY on
the multipactor boundaries, also as input of true secondary,
elastically, and not elastically reflected electrons, is ana-
lyzed in [17–19]. With a high enough SEY hybrid resonant
mode can transit to the polyphase regime [20–22].
The models including the realistic properties of the

electron emission should include statistical methods [23]
and require numerical simulations.
We are not going to refer here to the numerical codes

which are described in many papers. Multipactor in more
complex geometries (coaxial lines, waveguides with partly
reflected power, resonant cavities, etc.) are beyond the
scope of this short overview. We do not discuss the satu-
ration level of the multipactor discharge. Let us mention
only one more focusing mechanism in a flat gap whereby
the leading edge of the discharge grows at the expense of
the trailing edge that may shape very tight sheets of elec-
trons in a steady state [24]. More detailed though also a
concise historical review of the multipactor discharge is
presented in [25].
The papers cited above relate mainly to a multipactor in

a flat gap because in the following we want to compare the
analytical results with the experimental data for a flat gap
and propose a pictorial model illustrating some specific
properties of the phenomenon.
In the following, the analytical description of the multi-

pacting [4,26] is used as a starting point. The influence of
the normal and tangential components of the initial velocity
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on the position of discharge bands and some considerations
for those starting phases when the decelerating field can
return the electron to the same electrode from where it
started are taken into account. Yet the difference between
calculated and measured borders has remained significant.
Of course, more complicated kinematic solutions from the
papers cited above can be used. However, we will show a
somehow different presentation.

As an example of such a discrepancy between simple
analytical theory and reality, we will analyze the experi-
mental results of a pioneer paper by Hatch and Williams
[1] taking into account conditions of stability and limita-
tions by low impact energy. In the original work the
condition of stability was presented for the motion that
looked like a reflection of electrons from the walls with a
certain coefficient of elasticity. But such a reflection does
not correspond to the experimental data. The value of the
coefficient was just fitted to the experiment.

On the experimental zone of multipacting, we will con-
sider three points: A, B, and C (Fig. 1) where the discharge
was observed. The earlier theory [4,26], without improve-
ment for more complicated trajectories as pointed above,
explains existence of discharge only in A.

In the present article generalization of the phase stability
condition is proposed. The revised stability condition gives
a better understanding of the experimental results.

II. ANALYSIS OF THE EQUATION OF MOTION

The equation of motion for an electron in the gap is

€y ¼ eU

md
sin!t;

where the coordinate y is measured normal to the surface
of one of the electrodes; e=m is the specific charge of the
electron, the charge is considered positive to simplify the
writing; U is the voltage across the gap, which is of length
d; ! ¼ 2�f, where f is the oscillation frequency; t is the
time. It is helpful to rewrite this in the normalized form:

�00 ¼ � sin�; (1)

where � ¼ x=d, � ¼ U=U0, U0 ¼ m!2d2=e, and � ¼ !t;
primes denote derivatives with respect to �, while dots
indicate derivatives with respect to t.
Integrating Eq. (1), we obtain

�0 ¼ �ðcos�1 � cos�Þ þ �1; (2)

�¼�ð���1Þcos�1þ�ðsin�1�sin�Þþ�1ð���1Þ: (3)

Here �1 is the phase at which the electron enters the gap,
and �1 ¼ v?=!d is the dimensionless normal component
of the initial velocity of the secondary electron.
As it is shown in [4,26], the value of �1 corresponds

approximately to one-half of the initial energy of second-
ary electrons and can be expressed as follows:

� ¼ �v?
!d

¼ 2

3

�v

!d
¼ 2

3

ffiffiffiffiffiffiffiffiffi
2 �Us

U0

s
: (4)

Here the factor of 2=3 appears because of the angular
distribution of the secondary electrons and ð2=3Þ2 � 0:5
leads from �Us to �0:5 �Us for the normal component.
The condition for the electron to ‘‘resonantly’’ cross the

gap is that the transit time be equal to an odd multiple of
half periods of the rf field; this ensures that newly gener-
ated secondary electrons see the same relative phase of the
field as their predecessors. Equation (3) implies that

1¼�ð�2��1Þcos�1þ�ðsin�1�sin�2Þþ�1ð�2��1Þ; (5)

where �2 is the phase at which the electron reaches
the second electrode at � ¼ 1. Since the transit time
�2 � �1 ¼ ð2n� 1Þ�, (5) gives

� ¼ 1� ð2n� 1Þ��1

ð2n� 1Þ� cos�1 þ 2 sin�1
: (6)

So, for each starting phase �1 we can find the value of
normalized voltage � and hence voltage U across the gap.
The discharge is possible at this voltage if the stability
condition is satisfied. Usually, this means that the initial
phase of next generations of electrons does not change
significantly if the initial electron has an excursion of its
phase. The excursion of the phase relative to the equilib-
rium phase will decrease with each crossing the gap under
the condition

j@�2=@�1j< 1: (7)

We will call this the simple stability condition. Later we
will introduce the conception of a generalized stability
condition.
Analysis of the motion for the marked points A, B, andC

could be performed right away; however, we need to pay
attention to the value �1 defined earlier.
The most probable initial velocity of the secondary

electron is usually associated with the peak of energy
distribution of these electrons. However, it is wrong, and

FIG. 1. Experimental curve [1] and calculated borders of the
multipactor zone for different values of the initial energy �Us of
secondary electrons. Electrode separation is 3 cm. The straight
solid lines are obtained from the condition of stability, dashed
and dotted lines correspond to a border with SEY ¼ 1 with
different impact energy.
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because the initial energy �Us defines the value �1, we will
discuss this separately.

III. DISTRIBUTION OF INITIAL VELOCITIES
AND THE BOUNDARY WITH SEY ¼ 1

In the discussed experiment silver-plated electrodes
were used. The energy distribution of secondary electrons
for the case of silver electrodes can be taken from [27].
The expression for the energy distribution function
dn ¼ fðWÞdW can be recalculated for initial velocities

or, which is more convenient, for the variable of
ffiffiffiffiffi
W

p
:

dn ¼ fðmv2=2Þmvdv ¼ 2
ffiffiffiffiffi
W

p
fðWÞd ffiffiffiffiffi

W
p

:

As seen from Fig. 2, the distribution with respect to
ffiffiffiffiffi
W

p
has a well-defined maximum corresponding to the most
probable velocity of the secondary electrons.

For calculation of this distribution, the original experi-
mental data (Fig. 2, upper left) were presented analytically
as

fðWÞ ¼ 0:07þ p � exp
�
�Wn

A

�

� ðpþ 0:07Þ � exp
��W � 0:05W2

B

�

with p ¼ 1:15, n ¼ 1:05, A ¼ 22, and B ¼ 3. This gives
the average value of the secondary electron energy as
22 eV and the most probable velocity corresponds to
energy of 10.5 eV. We neglect here the elastically scattered
electrons, which give the sharp maximum in Fig. 2, upper
left picture.

In Fig. 1 the upper and lower borders of the 1st (n ¼ 1)
discharge zone are presented for different values of the
initial energy (straight lines). These borders are obtained in
[4] from condition (7). Also shown are the curves for the
energy bounds corresponding to SEY ¼ 1. One can see
that the curvature of the line showing the energy bound fits
experimental data best for the initial energy of 10.5 eV, i.e.,
for the most probable velocity. The initial energy of sec-
ondary electrons of 4 eV used in earlier papers [4,26] is
presumably not consistent with this physical situation (see
Fig. 1, left) though gives maximum in the energy distribu-
tion. The average value of energy, 22 eV (Fig. 1, right), also
cannot be used.
However, the initial energy value �Us ¼ 4 eV appears to

be correct if we analyze the copper electrodes. In Fig. 3,
upper left, the experimental data [27] for copper are shown.
The next two pictures present the mathematical handling of
these data. It is clearly seen that, for the initial energy of
primary electrons 20–100 eV, the velocity peak position is
close to 4–6 eV. This data for copper (Fig. 3, upper right)
reveals a peak of energy distribution at V ¼ 0, not at
V ¼ 4–6 volts as it is for silver (Fig. 2, both upper pic-
tures), and the peak of reflected electrons is too broad in
comparison with the previous data for silver. Both these
features are determined by derivatives at the ends of
curves. However, even if there are some experimental
errors, the peak of velocity distribution at 4 eV is deter-
mined by the behavior of the middle part of these curves
and can be treated as more or less reliable.

IV. STABILITY CONDITION FOR DIFFERENT
POINTS OF THE MULTIPACTING ZONE

The condition for the stable electron motion in a multi-
pactor discharge requires that the electron enter the gap at a
definite phase. We can use (6) to calculate the normalized
voltage at which the discharge exists for a given start
phase.

FIG. 2. Energy distribution of secondary electrons emitted by
silver [27], its analytically obtained approximation, and distri-
bution with respect to square root of energy. Energy of primary
electrons is about 150 eV.

FIG. 3. Energy distribution of secondary electrons emitted by
copper [27], its analytically obtained derivative, and distribution
with respect to square root of energy. Energy of primary elec-
trons is from 20 to 100 eV.
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The change in the phase at the exit from the gap is
determined by fluctuations in the initial velocity and by
the initial change in the phase at the entrance. Here we will
neglect the initial velocity fluctuation: it is shown [3] that
the same results are obtained if we take into account
fluctuations in the initial phase only.

If the particle crosses the gap, the function �2 ¼ fð�1Þ
can be obtained from (5). If the electron goes back to the
same surface where it was emitted, the value of 1 in the
left-hand side of (5) should be replaced by 0.

Let us introduce a simple graphic interpretation of phase
motion, focusing and defocusing. With the help of a bisec-
tor of the right angle between coordinate axes, we can
easily find the starting phase for the next gap crossing if
we know the previous starting phase and if the function
�2 ¼ fð�1Þ is defined.

The examples of phase motion of an electron in the gap
are shown in Fig. 4. Four different cases of the value
@�2=@�1 used in (7) are shown in the picture. It is arbi-
trarily assumed for this figure that the secondary electron
yield SEY ¼ 1. Focusing (f) and defocusing (d) points are
shown for positive (left picture) and negative (right) values
of @�2=@�1.

Let us subtract the integer odd number of � radians from
the phase �2 if the particle crosses the gap and subtract the
even number of� radians from this phase if the particle falls
on the same electrode it was emitted from. Let these integer
numbers be such that the phases of arrival are in the interval
½��;��. Then the phase of the particle ‘‘in resonance’’ will
be the same after crossing the gap:�2 ¼ �1. It is obvious that
the condition of stability (7) will not change after such a
transformation of �2. The advantage of this transformation
lies in the fact that both phases, �1 and �2, are now placed on
the limited intervals, and the graphical interpretation of the
phase motion becomes very illustrative.

Now, when we have defined the value of �1 and rede-
fined �2, we can return to construction of the function �2 ¼
fð�1Þ for the points A, B, andC of Fig. 1. This function, the
phase trajectory for an arbitrary initial starting phase, and
the corresponding impact energy are presented in Fig. 5.
For each of the three points 100 flights of the particle are

calculated. It is assumed again that neither generation of
new electrons nor loss of them occurs on the surface
(SEY ¼ 1).
The case of point A is very simple. The condition (7) is

satisfied for �1 ¼ �0:227. After five crossings of the gap
the particle settles down to the focus point and all next
phase positions coincide. The impact energy at this point is
high enough, about 130 eV (see the lower part of the
picture), to produce secondary electrons with SEY> 1.
So it is a point of multipacting.
The simple stability condition is not satisfied in the point

B because @�2=@�1 ¼ �1:09<�1. Let us distinguish
two squares on the picture for this case. The inner one is
tightly hatched because though the defocusing process
develops, the value of the derivative is not too high and
lines go close one to another. The other one is the maximal
square on the bisector the upper side of which is shown in
Fig. 5 for the point B [MNPQ in Fig. 6(a)]. The pattern of

FIG. 4. Focusing to a stable phase and defocusing from an
unstable phase for an increasing and a decreasing function.

1

2

FIG. 5. Starting and arrival phases, and impact energy at
arrival for the marked points of Fig. 1.

FIG. 6. A square of stability for the case B.
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the phase trajectory practically does not depend on the
initial start phase. When the phase trajectory reaches the
point M [see details in Fig. 6(a)], its continuation enters
again into the smaller square. This trajectory cannot quit
the square MNPQ as can be seen from Fig. 6(a), because
after any small deviation of the trajectory outside the
square, it enters again into this square. The necessary
condition for this is that the entire curve is inside the
square. In Fig. 6(b) another possible behavior of the func-
tion fð�1Þ is shown: without a jump of the derivative at �l1.
We can formulate the 1st condition of the generalized
stability: if a part of the curve �2 ¼ fð�1Þ can be placed
inside a square located on the bisector of coordinate axes as
on the diagonal, and the values corresponding to the left
and right sides of this square are �l1 and �

r
1, and the related

values �l2 and �r2 satisfy the ratio

��������
�r2 � �l2
�r2 � �l2

��������<1; (8)

the motion is finite and limited by phase angles �l1 and �r1.
The simple condition of stability (7), as can be easily seen,
is a particular case of (8).

The whole curve defined on the interval always satisfies
condition (8) but it does not make a special physical sense,
just presents another limiting case.

The case of point C is a case of a repetitive motion when
part of the curve escapes from the square (peaks 1 and 2,
Fig. 5) but the whole trajectory stays within a limited
interval. For description of this motion let us introduce
‘‘higher order’’ functions:

�3 ¼ f2ð�1Þ ¼ f½fð�1Þ�;
�4 ¼ f3ð�1Þ ¼ f½f2ð�1Þ�; . . . ;

�mþ1 ¼ fmð�1Þ ¼ f½fm�1ð�1Þ�:
(9)

It appears for the motion presented in Fig. 5, point C, that
the equation

fmð�1Þ ¼ �1 (10)

has a solution for m ¼ 6. So the motion repeats after six
different start phases. This motion could be stable if

j@fmð�1Þ=@�1j< 1; (11)

m ¼ 6 for the point C. However, the inequality (11) is not
satisfied in this case: @�7=@ð�1Þ ¼ �3:86. Nevertheless,
because of the particular pattern of the phase trajectory, no
particle falls into the region of peaks 1 and 2 (see Fig. 5,
point C). For the outlined square the same condition (8) is
valid as for point B.
The inequality (11) together with condition (10) can be

treated as the second generalized condition of stability. It
reduces to the case of the simple stability condition (7),
whenm is equal to 1. We should assume f1ð�1Þ � fð�1Þ in
this case.

FIG. 7. Dependence of the starting phase on the number of the flight.

FIG. 8. Phase portrait of multipacting for points A and B of
Fig. 1 after different number of flights.
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Lower parts of the pictures in Fig. 5 show the energy of
primary electrons vs the start phase. If this energy is too
low the discharge can survive only if the product of the
SEY for all the cases of impact keeps bigger than unity. As
can be seen from the data in [19] even at very low energies
the value of the SEY does not drop below approximately
0.7 due to elastically scattered electrons and the discharge
can persist.

Another presentation of the phase motion is shown in
Fig. 7. Here the starting phase �m is plotted versus the
number of the flight.

One more illustration of the grouping process is shown
in Figs. 8 and 9. Here for the initial phase �1 homogene-
ously distributed in the interval (1000 points), the next
generations of particles are shown after different number
of flights. Two last pictures for the points B and C show a
change of the phase for two successive flights.

V. CONCLUSIONS

Introduction of the generalized condition of stability in
multipacting helps to understand the expanding of multi-
pacting zones beyond the limits predicted by the simple
stability condition. The illustrative phase diagram for a flat
gap shows the phase motion when the simple condition of
stability is both applicable and not applicable for descrip-
tion of motion. Because of assumption of a yield of 1,
stable trajectories may not necessarily lead to growth, a
condition of a cumulative SEY> 1 should be met after
each flight in this model.

Other presentations of the grouping process show that
the electrons of the multipactor discharge can group into
layers even when the simple condition of stability does not
work.

The results of this work are applicable for more com-
plicated geometries when experimental zones appear
broader than obtained by simulations.

Results obtained for initial velocities of secondary elec-
trons show that the most probable initial velocity of the
secondary electrons does not correspond to the most prob-
able their energy, the fact that should be taken into account
in simulations.
The author is grateful to Sergey Belomestnykh for useful

discussions.
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