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Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the

brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs.

Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse

intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal

intensity profiles, with spatial resolution of 20 �m and temporal resolution of 130 fs. The capability is

illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.
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Next-generation x-ray facilities, such as free-electron
lasers and energy recovery linacs (ERLs), produce high
brightness x-ray beams from diffraction-limited electron
beams. The initial electron-beam properties determine the
performance of the entire facility, which makes the devel-
opment of low-emittance electron sources a priority [1].
The beam emittance is a result of the interplay of several
phenomena, and depends on a number of factors such as
the pulse shape of the photoinjector drive laser [2], the
three-dimensional (3D) nature of space-charge forces in-
side the bunch, the boundary conditions near the photo-
cathode [3], the fields in the radio-frequency (rf) linac
cavities, and the aberrations of the electron optics in the
gun and downstream. Achieving an ideal 3D electron-
beam shape is a matter of active research in the accelerator
community: a uniform ellipsoidal beam is the optimal
shape when considering linear space-charge forces in free
space [4], while a cylindrical shape is known to produce
small emittances and is a practical solution pursued in
several laboratories [5,6]. However, the optimum intensity
profile in a real system generally requires more compli-
cated shapes to achieve the lowest emittance [7]. To ex-
perimentally study the effects of the laser shape on beam
performance in photoinjectors, a reliable 3D laser pulse
intensity diagnostic is required.

Most existing pulse/beam diagnostics measure the field
in the space and time domains separately. Second-order
autocorrelation is one of the more traditional techniques in
the laser field; being simple in its implementation, it,

however, can only provide limited temporal and phase
information [8]. Frequency-resolved optical gating
(FROG) and its successors give both the temporal intensity
and phase information, through the spectrogram of the sum
frequency generated by the original laser pulse [9]. FROG
employs an iterative phase-retrieval algorithm, which
works well for most applications. The spectral phase in-
terferometry for direct electric-field reconstruction
(SPIDER) technique can also measure the optical field
(both the amplitude and phase) by use of a spectral shear-
ing interferometer [10]. Both of these are established tech-
niques for characterization of the full electric field of a
light pulse. Typically, a charge-coupled device (CCD)
camera is used to display the (time-integrated) transverse
intensity profile. While measuring the spatial and time
domains separately suffices for many practical cases, the
flexibility of the electron generation mechanism in photo-
injectors calls for a more general diagnostic capable of
providing direct 3D intensity information for the laser
pulses incident on the cathode. The phase information is
not necessary because the photocathode is not sensitive to
the phase. Two-dimensional (2D) spatiotemporal field di-
agnostics have been developed [11–14] and 3D diagnostics
have also achieved limited success [15–17]. Recently, Li
et al. developed a simple scheme to measure the 3D laser
pulse intensity [18–20], which is essentially a first order
noncollinear cross correlation with a CCD camera as a
detector. The proof-of-principle experiment has been per-
formed in [18–20], but a number of questions remain
regarding the method’s limitations and capabilities. As a
first-order autocorrelation technique, it cannot be sensitive
to the phase; would a cross correlation between a
transform-limited (TL) pulse and the unknown pulse yield
more information than an autocorrelation, which washes
out all the phase information? What sets the accuracy
of the method? Can the method be verified using other
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techniques and in what cases does it serve as a reliable 3D
laser shape diagnostic? What role does data processing
play in arriving at the intensity profiles and how can one
improve the data analysis? The present work presents a
ready-to-use data analysis toolkit and explores the meth-
od’s capability in a number of controlled experiments,
confirming the accuracy and the practicality of this tech-
nique. A quantitative comparison between the measured
results and theoretical predictions is presented. The limi-
tations of the method are discussed as well.

We begin with a brief survey of the existing 3D laser
pulse diagnostics and follow with the implementation of
the 3D intensity measurement. Then we present the mea-
surements of stacked soliton pulses, which offer one prac-
tical solution for minimization of electron-beam emittance
in photoinjectors [6]. We further illustrate the capability of
the 3D diagnostic by measuring the pulse from an all-
normal dispersion (ANDi) fiber laser [21], which has a
complicated temporal shape. We conclude with a discus-
sion of the limitations of this technique and the outlook for
future development.

I. SPATIOTEMPORAL DIAGNOSTICS

Although diagnostics of the temporal pulse shape are
well developed, 3D spatiotemporal laser diagnostics have
had limited success, in part because of the challenges in
their implementation. Unlike the temporal field, which can
be mapped to some equivalent one-dimensional represen-
tation (such as the spectrum in the frequency domain or
intensity in the time domain), or a two-dimensional repre-
sentation (such as the spectrogram) and easily measured,
the three-dimensional field can only be accessed by brute
force. Thus, the majority of the methods are based on
autocorrelation or cross correlation with an appropriately
prepared probe pulse. Di Trapani et al. suggested a cross
correlation scheme to image short optical pulses based on
noncollinear sum frequency generation; it offers new
capabilities to measure the 3D intensity, but the finite
bandwidth of the mixing crystal and the noncollinear mix-
ing process limit its spatiotemporal resolution and require
extensive data interpretation [15]. Trebino et al. developed
a technique based on nonlinear spectral interferometry and,
in particular, demonstrated measurement of a pulse at a
focus [16]. Trebino and co-workers also demonstrated full
three-dimensional intensity and phase information from a
single hologram, in which two pulses are cross correlated
through a specially made diffractive optical element [17],
although the time resolution is limited and the setup is
highly specialized. Finally, Li et al. presented a generic
method based on noncollinear first order cross correlation
[18–20], whose implementation is simple and which is
suitable for measurement of a large variety of pulses. As
a 3D diagnostic, its accuracy and limitations need to be
further investigated. We present this systematic study in a
number of controlled experiments.

II. METHOD AND IMPLEMENTATION

This method is essentially a noncollinear first order cross
correlation, as illustrated by Fig. 1(a). The pulse under
investigation (object pulse) is split into two beams to
produce a probe pulse. Ideally, the probe beam should be
the transform-limited (TL) version of the original pulse,
which was the case in our experiment. These two pulses are
combined at a small angle and then detected by a CCD
camera. The angle between these two beams is chosen so
that the interference fringe spatial period is small but
resolvable on the CCD camera. The time delay between
the probe and object pulses is adjusted by an optical delay
line, and the CCD camera records the time-integrated
intensity (fluence) Ið ~r; �Þ as a function of the time delay
� [20] (we refer to this quantity simply as intensity for the
rest of the paper):

Ið~r; �Þ ¼
Z

dtjAoð ~r; tÞ exp½i�oðtÞ þ i ~ko � ~r� i!0t�
þ Apð ~r; t� �Þ exp½i�pðt� �Þ
þ i ~kp � ~r� i!0ðt� �Þ�j2

¼ Ioð ~rÞ þ Ipð~rÞ þ 2 cosf!½�þ �ð ~rÞ�g
�

Z
dtAoðt; ~rÞA�

p½t� �ð ~rÞ � �; ~r�
� cosf�oðtÞ ��p½t� �ð ~rÞ � ��g: (1)

Að~r; tÞ and �ð~r; tÞ are the slowly varying amplitude and
phase of the pulse; the subscripts o and p denote the object
and probe pulses, respectively. Ioð~rÞ and Ipð ~rÞ are the

intensities of the object beam and the probe beam sepa-
rately, with the coupling term representing the interference
between them. When the probe pulse is short compared to
the object pulse, Eq. (1) can be simplified by applying the �

FIG. 1. (a) Conceptual and (b) schematic implementation of
the diagnostic. (a) The initial beam is split to the probe beam and
object beam, with adjustable time delays, then they are com-
bined with a small angle on the CCD camera. (b) The experi-
mental setup to measure stacked soliton pulses: ISO, isolator;
HWP, half wave plate; PBS, polarization beam splitter; TEL,
telescope; BS, beam splitter; BB, beam block; 1D ST, motorized
one-dimensional stage; SH1, shutter 1; SH2, shutter 2; CCD,
CCD camera.
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function approximation, then we obtain the same formula
as in [20],

Ið~r; �Þ � Ioð ~rÞ þ Ipð ~rÞ þ 2 cos!½�þ �ð ~rÞ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tpioð�; ~rÞ

q ffiffiffiffiffiffiffiffiffiffi
Ipð ~rÞ

q
: (2)

�tp is the duration of the probe pulse, and ioð�; rÞ is the
object pulse intensity at different time delays. The � func-
tion approximation neglects temporal broadening from the
cross correlation, as expected. On the other hand, the effect
of cross correlation on the phase is more complicated and
will be discussed further below. The object pulse intensity
at time � can be retrieved from [20]

ioð�; ~rÞ / C2ð�; ~rÞ=Ipð~rÞ: (3)

Here Cð�; rÞ is the amplitude of the coupling term in
Eq. (2); it corresponds to the spatial modulation depth of
the interference pattern.

The probe and object beams are combined at an angle
for practical reasons. If they overlap perfectly with each
other, the time delay line will be sensitive to less than a
quarter wavelength; considering the moving part of the
delay line and mechanical vibrations in the lab, this con-
figuration is overly sensitive and may produce artifacts that
would degrade both the temporal and spatial resolutions.
With a small angle between the beams, the ambient noise
shifts the phase of the fringes but not the envelope [20]. A
larger angle corresponds to finer spatial fringes, and finer
resolution. In our experiments, the angle is 0.05 rad, which
produces fringes with 20 �m period at 1 �m wavelength.
These are resolved by the CCD camera, which has pixel
size 4:4� 4:4 �m. Thus, our spatial resolution is 20 �m.

The modulation depth Cð�; ~rÞ should be measured with
good fidelity, and this creates several practical considera-
tions for the choice of the CCD camera. Generally speak-
ing, a low-noise and high dynamic-range CCD camera is
preferred. The thermal noise from the CCD camera is a
known issue; without cooling, the thermal noise from the
CCD camera cannot be ignored, and with lower optical
intensity increased Poisson noise will appear in the pulse
intensity as in Eq. (2). The contrast ratioCð�; ~rÞ can be very
small for the peripheral part of a pulse; increasing Apðt; ~rÞ
increases the contrast ratio, which improves the signal-to-
noise ratio achieved by the CCD camera. Practically, the
beam spatial intensity distribution is usually a Gaussian,
and magnifying the beam by 2 to 3 times will serve this
purpose. We magnified the probe beam by 3 times in our
experiment.

According to Eq. (2), at each time delay we need to
know the intensities of the object beam, the probe beam,
and the coupling term. Thus, we record the beam profiles
of the object beam [imgoð~r; �Þ], the probe beam
[imgpð~r; �Þ], and the overlapping beam [imgið ~r; �Þ] at

each time delay. By applying Eq. (3), we can retrieve the
object pulse intensity at each time delay.

The envelope of the spatial modulation gives the con-
trast ratio Cð ~r; �Þ, while the fine spatial modulation de-
pends on the angle between the object and probe beams. In
order to extract the contrast ratio envelope from the inter-
ference pattern, we need to take the absolute value of the
spatial modulation, and then filter out these modulations
with a low-pass filter in the spatial frequency domain:

Gð!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ ð!!0
Þ2N

vuut : (4)

We use a Butterworth filter [Eq. (4)], which has a flat
response in the pass band and thus introduces little dis-
tortion to the contrast envelope. In our experiment, we set
N ¼ 8; the bandpass frequency !0 is determined by min-
imizing the probe pulse distortion before and after filtering.
After filtering, we inverse Fourier transform the filtered
spatial frequency back to the space domain to obtain the
contrast ratio envelope at a given time delay [CFð�; ~rÞ]. We
also filter the intensity of the probe beam to make the data
processing consistent. This can be expressed as

CFð�; ~rÞ ¼ IFFT2½FilterðFFT2fABS
� ½imgi � imgo � imgpð ~r; �Þ�gÞ�; (5)

ioð�; ~rÞ / jCFð�; ~rÞj2=IFp ð ~rÞ: (6)

Here the notations ABS, FFT2, and IFFT2 refer to
absolute value, two-dimensional fast Fourier transform,
and inverse two-dimensional fast Fourier transform. The
superscript F denotes the filtered results.
Whenever a filter is used in data processing, systematic

error is introduced. Because of the low-pass nature of the
filter, beam profiles with sharp edges can be smoothed out.
In our experiment, all the spatial shapes are essentially
Gaussian, so that this was not an issue. But for other
profiles such as a flattop, or a high-order super-Gaussian,
more optimized filtering may present an advantage. The
process is repeated for each intensity slice at a given time
delay and their combination provides the 3D laser pulse
intensity.
We illustrate the method and its capabilities by perform-

ing 3D pulse characterization from two different laser
systems. The first is a stack of soliton pulses, which is
being used at the Cornell ERL photoinjector [2,6]. The

FIG. 2. The soliton laser characterization: (a) the second-order
autocorrelation; (b) the spectrum.
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second is the measurement of the pulse directly from an
all-normal-dispersion (ANDi) fiber laser [21], which dis-
plays salient temporal features that allows for quantitative
comparison with the known pulse shape.

III. MEASUREMENT OF STACKED
SOLITON PULSES

The experimental setup in depicted in Fig. 1(b). It com-
poses of the soliton and the diagnostics. Soliton pulse
evolution happens in the anomalous group velocity disper-
sion (GVD) regime, where the phases accumulated from
the nonlinearity and the dispersion cancel each other ex-
actly; this evolution can also happen when the laser cavity
has segments of normal and anomalous GVD and net
negative GVD. We constructed a soliton laser from a
Yb-doped fiber system. A grating pair inside the cavity
provides �4 ps2 GVD, while the fiber dispersion is only
around þ0:08 ps2, so that the laser operates in the soliton
region. The second-order autocorrelation is shown in
Fig. 2, and the spectrum exhibits sidebands that correspond

FIG. 3. Passive beam shaping by two YVO4 birefringent crys-
tals. Their optical axes are oriented at 45� to each other. By
varying this angle, more complicated pulses can be produced in
the time domain.

FIG. 4. The raw data for the stacked soliton case: (a) the probe beam (imgp); (b) the object beam (imgo); (c) the overlapping of the
probe and object beam when they overlap in the time domain (the interference, img1i ); (d) zoomed in image of (c); (e) the overlapping
of the probe and object beam when they do not overlap in the time domain (the interference, img2i ); (f) zoomed in image of (e).
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to dispersive waves. The full-width at half-maximum pulse
duration and spectral bandwidth are around 2 ps and 0.7
nm, respectively; these give a time-bandwidth product of
0.4, which is close to the TL value of 0.32. After producing
these pulses, we stacked them together to produce a longer
cylinderlike pulse [22].

After the pulses are generated from the soliton laser, the
beam is split into the object and probe beams [Fig. 1(b)].
The object beam passes through two birefringent crystals
that are configured to produce four replicas of linear ver-
tical and horizontal polarization, as in Fig. 3. Two a-cut
YVO4 crystals with lengths 3.4 and 6.8 mm are configured
with optical axes 45� to each other and the laser beam
strikes with polarization 45� to the optical axis of the first
crystal. The ordinary (o) and extraordinary (e) pulses are
separated inside the birefringent crystal because of their
group velocity mismatch; a 1-mm YVO4 crystal causes
�0:8-ps delay between the o pulse and e pulses at 1 �m
wavelength. Because the polarization is 45� with respect to
the optical axis, the o and e pulse have the same amplitude.
After passing through these two crystals, four replica
pulses with equal amplitude are produced, and together
they stack to a longer pulse, with nearly flattop distribution
in the time domain [6,22,23]. As mentioned before, to
reduce the error from the retrieval process, the probe
beam is magnified by a 1:3 telescope. A one-dimensional
motorized stage with 50-nm precision serves as the optical
delay line; the time delay is set with 130-fs precision which

defines the time resolution. The shutters 1 and 2 in Fig. 1(b)
are used to select the probe, object, and overlapping beams
separately. The shaped pulse has two orthogonal linear
polarizations, and they are detected separately. The half
wave plate (HWP) rotates the polarization of the shaped
beam, so that only one polarization projects on the probe
beam and contributes to the signal on the CCD camera,
while the other polarization is orthogonal to the probe
beam polarization, and does not produce a signal. A
14-bit CCD camera (Spiricon GRAS20) serves as the
detector, which has spatial resolution 4:4 �m. The data
acquisition process precedes the data analysis and both are
fully automated in MATLAB—collection of 200 data points
in the time domain with image resolution 1600� 1200
(each file is �1:9 MB) at each slice takes about ten mi-
nutes. After applying Eq. (3) to retrieve the object beam
intensity, the 3D intensity information is obtained; the data
analysis takes around 60 minutes on a quad-core processor
with four threads running simultaneously, and it can be
further parallelized if more processors are available.
Some sample raw data are shown in Fig. 4. The probe

beam is magnified by�3 times [Fig. 4(a)] compared to the
object beam [Fig. 4(b)], so only the center part with
adequate intensity overlaps the object beam. When they
overlap each other in the time domain, spatial modulations
are produced as seen in Figs. 4(c) and 4(d). When the
time delay is large, very little spatial modulation is ob-
served [Figs. 4(e) and 4(f)]. The envelope of the spatial

FIG. 5. The spatial filter: (a) the image before filtering, ABSðimg1i � imgp � imgoÞ; (b) the image after filtering; (c) the log scale
spatial frequency of (a) before filtering; (d) the log scale spatial frequency intensity of (b), after filtering.
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modulation changes and reflects the pulse intensity profile
at each time delay.
Figure 5(a) shows the absolute spatial modulation enve-

lope of Fig. 4(c). Its spatial frequency spectrum is depicted
in Fig. 5(c). The sidebands correspond to the modulation
fringes, and the dynamic range is �104, which is limited
by the dynamic range of the CCD camera. After applying
the low-pass Butterworth filter, the sidebands are sup-
pressed by a factor of �1020 [Fig. 5(d)] and the inverse
Fourier transform gives the absolute envelope of the con-
trast ratio. The object pulse intensity at a given time delay
is reconstructed by applying Eq. (3).
By repeating this process at each time delay, slices of the

3D object pulse intensity are collected; combining them,
we can get the 3D intensity of the object beam, as shown in
the isointensity surfaces plot [Fig. 6(b)], where the false
color represents different light intensities. The temporal
intensity is obtained by integrating the pulse intensity at
each time delay, as shown in Fig. 6(a), where we can see
the four nearly equal peaks of the stacked soliton pulses.
Each polarization has two peaks and these peaks are sepa-
rated by�3 ps with each other, as expected; their width is
�2:2 ps which is sightly larger than the 2 ps interferomet-
ric autocorrelation measurement, because of the broaden-
ing from the cross correlation. The nonzero intensity
values between these peaks come from elliptically polar-
ized light, which can come from the misalignment of the
birefringent shaping crystals as well as the cutting angle
error (	 0:5�). To verify the result in the spatial domain,
we compared the total intensity from the retrieval to
the signal on the CCD camera, as shown in Fig. 7. The

FIG. 6. Results of measurement of stacked soliton pulses:
(a) the temporal intensity distribution obtained by cross corre-
lation; (b) the three-dimensional intensity distribution, plotted as
isointensity surfaces.

FIG. 7. The stacked soliton pulses intensity profile: (a) the normalized probe beam intensity; (b) the object beam intensity on the
CCD camera; (c) the object beam intensity difference between retrieval process and the intensity on the CCD camera; (d) the probe
beam intensity subtract from the object beam intensity; (e) the object beam intensity from retrieval process; (f) the relative error of the
retrieval process.
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time-integrated intensity of the object beam on the CCD
camera [Fig. 7(b)] and the one from the retrieval process
[Fig. 7(e)] are normalized; the difference between them
is shown in Fig. 7(c), with the relative error shown in
Fig. 7(f). For the object part, when the normalized intensity
is greater than 0.5, the relative error is smaller than 8% and
the root mean square (rms) error is less than 2%. Thus, the
diagnostic also gives good results for the stacked soliton
pulses in the spatial domain.

IV. MEASUREMENT OF THE PULSE FROM AN
ALL-NORMAL-DISPERSION LASER

This diagnostic can also handle pulses with more com-
plicated temporal structure, such as the pulse produced
directly from a Yb-doped ANDi fiber laser [21]. Unlike
in the soliton regime, where the pulse energy is limited by
the area theorem [24], the ANDi regime can support much
higher pulse energy. However, the pulses have a large and
nearly linear frequency sweep or chirp, and are therefore
not TL [21].

The linearly chirped pulses can be dechirped to TL by a
grating pair; with�0:33 ps2 GVD, we dechirped the pulse
to �200 fs, close to the TL [Fig. 8(a)]. These pulses serve
as the probe beam, also magnified by a 1:3 telescope to
reduce the retrieval error. With a setup similar to the one
used for the stacked soliton, we measured its three-
dimensional intensity.

The temporal intensity is depicted in Fig. 9(a). The
temporal profile looks similar to the spectrum because
the pulse is highly linearly chirped. The retrieval result is
very close to the spectrum FT including the phase infor-
mation, which again demonstrates good fidelity of this
diagnostics. The small discrepancy comes from the �
function approximation in Eq. (2). Although the 200-fs
probe pulse is indeed much shorter than the�10 ps object
pulse, and the broadening effect from the cross correlation
is negligible (< 0:01%), the phase needs to be considered
because only the coherent parts will add together. For this
particular object pulse, the linear phase change across
200 fs is around �. The phase cross correlation between
the TL probe and highly linearly chirped object pulses

results in a shape similar to the temporal intensity profile
of the object pulse. As discussed above, in this situation,
the retrieved intensity profile will have the correct
qualitative features, but will have quantitative discrepancy
from the correct result. This discrepancy is illustrated in
Fig. 9(a).
The three-dimensional intensity is depicted as the iso-

intensity surfaces in Fig. 9(b). The method successfully
recovers the structure present in the pulse. Figure 10 shows
good agreement for the spatial domain, even though the
probe pulse profile suffered from scratches on the dechirp-
ing grating pair, and is far from being a Gaussian. Good
results with less than 10% error for the center part of the
object beam and�2% rms [Fig. 10(f)] can still be obtained
when the normalized intensity is larger than 0.5.

FIG. 8. The ANDi fiber laser characterization: (a) the second-
order autocorrelation, the black curve is the 0-phase spectrum
Fourier transform (FT), the red curve is from measurement;
(b) the spectrum.

FIG. 9. The ANDi fiber laser results: (a) the temporal intensity
distribution; (b) the three-dimensional intensity distribution,
plotted in the isointensity surfaces.
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V. DISCUSSION AND LIMITATIONS

We measured the 3D intensity of stacked soliton pulses
and the pulse produced directly from an ANDi fiber laser
based on this method [18–20]. Our results demonstrate
good fidelity of this 3D technique in both the temporal
and spatial domains, and illustrate the capabilities of the
ready-to-use data analysis toolkit.

Although in the results presented here the temporal and
spatial parts of the pulse/beam were decoupled, the method
can also handle situations that include space-time cou-
pling. Some degradation in spatial resolution is anticipated
from the spatial filtering in the case of sharp flattop or
super-Gaussian profiles, although we expect the resolution
to remain adequate on a scale relevant for photoinjector
applications.

There are some limitations to this method. First, it
measures the intensity cross correlation. When the probe
pulse is much shorter than the object pulse, the broadening
effect is negligible, but the phase effect needs to be con-
sidered. The cross-correlated intensity has the same fea-
tures as the object pulse, but needs to be correctly
weighted. Second, as previously mentioned, the digital
filters introduce some systematic error. The low-pass filter
removes certain high spatial frequency, which will affect
very sharp spatial edges in the laser beam profile. Despite
these limitations, the method is simple and provides reli-
able 3D laser intensity profiles. We intend to apply this
technique in our studies on how the electron-beam emit-
tance depends on the laser pulse intensity distribution. The
3D diagnostic will help minimize the electron-beam emit-
tance by allowing us to control and optimize the laser pulse
shape incident on the photocathode.
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