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Advanced simulation codes now exist that can self-consistently solve Maxwell’s equations for the

combined system of an rf cavity and a beam bunch. While these simulations are important for a complete

understanding of the beam dynamics in rf cavities, they require significant time and computing power.

These techniques are therefore not readily included in real time simulations useful to the beam physicist

during beam operations. Thus, there exists a need for a simplified algorithm which simulates realistic

cavity fields significantly faster than self-consistent codes, while still incorporating enough of the

necessary physics to ensure accurate beam dynamics computation. To this end, we establish a procedure

for producing realistic field maps using lossless cavity eigenmode field solvers. This algorithm incorpo-

rates all relevant cavity design and operating parameters, including beam loading from a nonrelativistic

beam. The algorithm is then used to investigate the asymmetric quadrupolelike focusing produced by the

input couplers of the Cornell ERL injector cavity for a variety of beam and operating parameters.

DOI: 10.1103/PhysRevSTAB.14.032002 PACS numbers: 41.85.�p, 29.20.Ej

I. INTRODUCTION

The effects on the beam dynamics due to the placement
of both the input power couplers and higher order mode
(HOM) couplers of superconducting radio-frequency cav-
ities in linear accelerators have been studied extensively.
The majority of this work focuses on the transverse mo-
mentum imparted to the beam due to a single input power
coupler or a pair of upstream and downstream HOM
couplers [1–3]. Many mitigation techniques for eliminat-
ing this ‘‘coupler kick’’ have been proposed and studied for
a variety of cavity geometries, including the TESLA-style
ILC cavity, the CEBAF cavities [4], as well as the injector
and main linac cavities for the proposed Cornell ERL
[5–8]. One of these techniques is to design the cavity
with twin symmetric power couplers. This approach has
been used in the design for the cavities in the current
Cornell ERL injector prototype, a high-brightness photo-
electron source. While this effectively eliminates the di-
pole coupler kick, it still produces off-axis quadrupolelike
focusing near the couplers. Developing a way to correctly
model this effect in heavily beam-loaded superconducting
cavities like those found in high current electron accelera-
tors—particularly high-brightness photoinjectors and rf
guns (where the beam may not be considered ultrarelativ-
istic)—is the goal of this investigation.

The layout of our work is as follows. First, drawing on
previous studies [1–8], a detailed description of how to
compute realistic field maps for rf cavities using lossless
eigenmode solvers is given. This method incorporates all

relevant cavity design and operating parameters. These
include the cavity voltage, phase, detuning angle, input
coupling, and beam loading. While the basis of this method
has been previously developed, to our knowledge there is
no single comprehensive account of this procedure in the
literature. Additionally, for nonrelativistic beams, this
treatment yields implicit expressions for the cavity fields.
In order to extend the algorithm to account for low beam
energies, approximations for computing the effective cav-
ity voltage and R=Q of the cavity are given and tested. The
use of these approximations results in explicit expressions
for the cavity fields. Next, the definition of the coupler kick
is also extended to the nonrelativistic regime by explicitly
writing the effect in terms of the transfer matrix elements
through the cavity field map. We provide one description of
how to compute these matrices using orbit differentiation
[9], and also give a simple method for expanding the cavity
fields in the paraxial approximation assuming symmetry
about the x-z and y-z planes (quadrupolelike symmetry).
Having extended the algorithm for computing the cavity
fields as well as the effect of the input couplers, we perform
several checks on both and discuss the relevant numerical
issues involved. Finally, we apply this methodology to the
model of the Cornell ERL injector cavities and quantify the
quadrupole focusing effect due to the use of twin symmet-
ric input couplers. The effect is documented for scans of
both the initial beam energy and the average beam current,
and for both orientations of the cavity (the couplers at the
cavity entrance vs exit).

II. FIELD GENERATION ALGORITHM

The computation of rf cavity fields can be greatly sim-
plified by making one assumption: the effects of beam
loading do not alter the form of the fields in the cavity.
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In this limit, the beam induces a voltage in the cavity in one
of its fundamental modes. This assumption is valid if the
amount of energy lost to each bunch, �Ub, is very small
compared to the energy stored in the cavity:

�Ub

U
� 1: (1)

In this limit, it is possible to create realistic fields from
lossless eigenmode solvers. The procedure for synthesiz-
ing these field maps involves reconstructing the forward
and reflected traveling waves in the input power coupler(s).
The proper normalization and phase of these waves are
related to the cavity design and operating conditions. By
correctly including the operating conditions, the combined
traveling waves in the input coupler represent the forward
power from the rf generator and the reflected power back
out of the cavity. Proper construction of these waves en-
sures the correct form for the fields in the cavity.

A. The Cornell ERL injector cavity model

Before moving directly to the procedure for constructing
realistic cavity fields, it is instructive to give a brief de-
scription of the Cornell ERL injector cavity as it is used as
a working example in the following sections. The Cornell
ERL photoinjector cryomodule houses five superconduct-
ing two-cell niobium rf cavities. The relevant design and
nominal operating parameters for the injector cavities are
listed in Table I. Each cavity is powered by two symmetric
coaxial input couplers. The couplers are designed to de-
liver 50 kWof forward power when operating with 100 mA
average current at a cavity voltage of 1 MV. The amount of
coupling to the cavity can be adjusted depending on the
desired operating conditions (low or high current running).
This is accomplished by changing the insertion depth of the
coupler antennas. To model the cavities we use the eigen-
mode field solver in CST MICROWAVE STUDIO (MWS) [10].
Figure 1 shows the 3D injector cavity model used in MWS.
The model assumes the cavity is made of perfectly con-
ducting material surrounded by vacuum. The ends of the
beam line are terminated by using an electric short
(Ek ¼ 0). The choice of boundary condition for the end

of the coaxial power couplers is discussed later. The coor-
dinate system in the model is defined so that the z axis in
the model coincides with the beam axis (the positive

direction is to the right in Fig. 1) and the y axis is parallel
to the center axis of the twin symmetric input couplers.

B. Creating traveling waves in the coaxial coupler line

1. Analytic expressions

To create the correct fields in the power coupler, it is
necessary to derive analytic formulas for the fields in this
region. Far from the end of the coupler and cavity, the fields
take the form of two superimposed TEM traveling waves.
We assume no other types of modes are excited in the
coupler. In this region the fields are given by

~E� ¼ A�
r

exp½ið�kðy� y0Þ þ��Þ�r̂;

~B� ¼ �A�
cr

exp½ið�kðy� y0Þ þ��Þ��̂:

Here the ‘‘þ’’ and ‘‘�’’ subscripts label the forward and
reflected waves in the top coupler (positive y axis). The
tilde denotes that these quantities are phasors with an
associated time dependence of ei!t. The location of the
origin along the y axis, y0, is arbitrary. The forward and
reflected power determine the amplitudes of each wave:

A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0cP�

� lnðro=riÞ

s
; A� ¼

ffiffiffiffiffiffiffi
P�
Pþ

s
Aþ: (2)

The terms ro and ri are the outer and inner radius of the
coaxial coupler. The reflection coefficient � is defined by

the complex ratio of amplitudes of ~E� and ~Eþ:

� ¼
� ~E�
~Eþ

�
y¼y0

¼ A�
Aþ

ei�� ¼ j�jei�� : (3)

From this it follows that A� ¼ j�jAþ and �� ¼
�� ��þ ¼ ��.

2. Circuit model and relation to operating parameters

In addition to being related to the operating parameters,
the forward and reflected power also satisfy the general
formula for the conservation of energy in the cavity-beam
system:

Pþ ¼ P� þ Pc þ Pb: (4)

TABLE I. List of cavity parameters [5].

Cornell ERL injector cavity parameters

Frequency 1300 MHz

Number of cells 2 elliptical

Number of couplers 2 coaxial

Cavity gap voltage 1–3 MV

Quality factor Q0 � 5� 109

External Q factor Qext 4:6� 104–4:1� 105

Coupler radii ri, ro 11, 30 mm

FIG. 1. MICROWAVE STUDIO model of ERL injector cavity
showing the cavity exterior (left), and the cavity cross section
and the inner conductors of the coaxial power couplers (right).
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In this equation Pc is the power lost in the cavity walls, and
Pb is the average power delivered to the beam. Satisfying
the balance of powers in this equation provides one a useful
check for the algorithm described below. From these quan-
tities, the well-known quality factors for the cavity are
defined [11,12]:

Q0¼!U

Pc

; Qext¼!U

Pext

; Qb¼!U

Pb

: (5)

The term Pext is the power emitted back out of the input
couplers when the cavity is operated with both the beam
and power generator turned off: Pb ¼ Pþ ¼ 0. In this
limit, Pext ¼ P�. The quality factor associated with the
power lost to the beam can be written as Qb ¼
2�ð�Ub=UÞ�1. The criterium in (1) is equivalent to having
a large value of Qb. Lastly, the measure of the coupling
strength, denoted by �, is defined as � ¼ Pext=Pc ¼
Q0=Qext.

The above quantities can now be related to the operating
conditions using transmission line theory and the equiva-
lent circuit model for a beam-loaded cavity first given by
Wilson [11]. The notation used here more closely follows
that of Wangler [13] in a similar treatment. Figure 2 shows
the equivalent parallel circuit for the cavity and waveguide
including beam loading. The waveguide is modeled as a
matched external load coupled to the cavity circuit via a
transformer. In the figure, the waveguide impedance ZWG

has already been transformed into the cavity circuit. The
effective voltage drop across the cavity is defined in terms
of the energy gain of an electron traveling through the
cavity on axis:

Vcð�0Þ ¼ ½�Wð�0Þ=e�
cos�0

:

The phase �0 is defined so that �0 ¼ 0 is the phase that
maximizes the energy gain �Wð�0 ¼ 0Þ ¼ maxð�WÞ. In
addition, the sign of �0 is chosen so that it also represents
the difference in phase of the cavity voltage to the
beam current. The cavity gap voltage is defined by taking
the ultrarelativistic limit of the effective cavity voltage:
Vc ! V0 as v ! c. The maximum effective voltage is

used, along with the power lost in the cavity walls, Pc, to
define the effective shunt impedance:

R ¼ V2
c

Pc

ð�0 ¼ 0Þ:

It is often useful to work with the ratio of the effective
shunt impedance and the intrinsic quality factor:

ðR=QÞ � R

Q0

¼ V2
c

!U
ð�0 ¼ 0Þ: (6)

Finally, the loaded detuning parameter is defined as

tanc 0 ¼ 2QL

�
�!

!

�
: (7)

Here �! is the difference between generator frequency
and the resonant frequency of the cavity, and QL ¼
Q0=ð1þ �Þ is the loaded quality factor. For strongly
coupled cavities QL 	 Qext.
In terms of these definitions, the complex impedance of

the cavity is given by [11]

Zc ¼ ðR=QÞQ0

1þ i tanc 0 : (8)

This impedance is in parallel to the beam impedance Zb ¼
ðVc=IbÞei�0 . This amounts to having a total admittance of

Y ¼ 1

Zb

þ 1

Zc

¼ Ib
Vc

e�i�0 þ 1þ i tanc 0

ðR=QÞQ0

: (9)

From the circuit, the waveguide impedance is given by
ZWG ¼ R=�. The general formula for the reflection coef-
ficient can be written as

� ¼ V�
Vþ

¼ 1� YZWG

1þ YZWG

: (10)

Substituting in the total admittance and the waveguide
impedance yields

� ¼ �
1��
1þ� þ Ib

Vc
ðR=QÞQLe

�i�0 þ i tanc 0

1þ Ib
Vc
ðR=QÞQLe

�i�0 þ i tanc 0 :

Using the fact that Vc ¼ Vþ þ V� and the above expres-
sion for �, the forward and reflected powers can be solved
for

Pþ ¼ Pc

ð�þ 1Þ2
4�

��
1þ Ib

Vc

�
R

Q

�
QL cos�0

�
2

þ
�
tanc 0 � Ib

Vc

�
R

Q

�
QL sin�0

�
2
�
;

P� ¼ Pc

ð�þ 1Þ2
4�

��
1� �

1þ �
þ Ib

Vc

�
R

Q

�
QL cos�0

�
2

þ
�
tanc 0 � Ib

Vc

�
R

Q

�
QL sin�0

�
2
�
:

(11)

FIG. 2. Equivalent circuit model for a beam-loaded cavity as
seen from the internal cavity circuit. The cavity is excited by the
generator current ig and the beam current ib.
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The formula for Pþ is equivalent to the formula for the
generator power Pg in [11]. With these expressions for

the forward and reflected power, it is easy to directly verify
the relationships in Eqs. (2) and (3), as well as the conser-
vation of energy requirement in (4).

It should be noted that any parameters defined in terms
of the energy gain of a single particle through the cavity,
�W, are in fact functions of the fields we are trying to
construct. This is due to the fact that the energy gain is not
in general given simply by V0 cos�0 in the nonrelativistic
limit. This issue will be further addressed after the equa-
tions for the realistic field maps have been (implicitly)
defined.

3. Connection to eigenmode solutions

Having connected the analytic expressions for the fields
in the coaxial coupler line to the cavity design and operat-
ing parameters, we now connect the analytic expressions
to the solutions from the eigenmode solver. To recreate
traveling waves in the coaxial coupler line of the forms
given in (2), two sets of electric and magnetic fields are
generated [1,3,5–8]. Each set is created by terminating the
input coupler line in the computer model with either an
electric or magnetic wall boundary condition. The field
solutions in the coaxial line near the boundary will then be
of the form

electric wall

8<
:Ee ¼ Ae

r sin½kðy� yBCÞ�r̂
Be ¼ i 
 Ae

cr cos½kðy� yBCÞ��̂ (12)

magnetic wall

8<
:Em ¼ Am

r cos½kðy� yBCÞ�r̂
Bm ¼ �i 
 Am

cr sin½kðy� yBCÞ��̂;
(13)

where yBC is the position of the coupler boundary condi-
tion. It is now easy to identify these terms with the real and
imaginary components of the fields given by the eigen-
mode solver:

electric wall

8<
:Re½Ee

MWS� ¼ Ae

r sin½kðy� yBCÞ�r̂
�0 Im½He

MWS� ¼ Ae

cr cos½kðy� yBCÞ��̂
(14)

magnetic wall

8<
:Re½Em

MWS� ¼ Am

r cos½kðy� yBCÞ�r̂
�0 Im½Hm

MWS� ¼ � Am

cr sin½kðy� yBCÞ��̂
(15)

From here it is evident that adding��=4 to the line length
of the electric wall solutions transforms the fields into
those produced using the magnetic wall condition (up to
an overall sign). With these relations, the MWS field maps
are added together in the following manner to yield the

plane waves given in (2). First, the amplitudes are solved
for in terms of the field maps:

Ae ¼ a 
�0c 
 Im½He
MWS�ðr ¼ a; y ¼ yBCÞ 
 �̂;

Am ¼ a 
 Re½Em
MWS�ðr ¼ a; y ¼ yBCÞ 
 r̂;

for some arbitrary radius a such that ri � a � ro. It turns
out that the field generation algorithm is quite sensitive to
the calculation of these amplitudes, as will be discussed
later. The fields are normalized and combined to form
traveling waves using

~E� ¼ A�
�
Re½Em

MWS�
Am � i

Re½Ee
MWS�

Ae

�
ei�� ;

~B� ¼ i�0A�
�
Im½Hm

MWS�
Am � i

Im½He
MWS�

Ae

�
ei�� ;

�� ¼ �kðyBC � yrefÞ þ��ð1� 1Þ=2:

(16)

Note the inclusion of the factor exp½�ikðyBC � yrefÞ�. This
is used to shift the origin of the traveling waves. The
position yref is the location of the reference plane, the point
where the maximum in the amplitude of the electric fields
occurs when the reflection coefficient � is positive and real.
The next section gives the procedure for how to compute
the position of reference plane. It is easy to show using the
analytic expressions for the field patterns in (15) that this
combination of fields yields the correct set of traveling
waves in the coaxial line. Plugging in the expressions for
the forward and reflected waves, the total fields can be
written as

~E ¼ A

�
ð1þ �e�ið2k�yÞÞRe½E

m
MWS�

Am

þ ið1� �e�ið2k�yÞÞRe½E
e
MWS�

Ae

�
;

~B ¼ i�0A

�
ð1þ �e�ið2k�yÞÞ Im½Hm

MWS�
Am

þ ið1� �e�ið2k�yÞÞ Im½He
MWS�

Ae

�
:

(17)

In these equations �y ¼ yBC � yref . These equations im-
ply several important facts, all of which depend on the
value of the reflection coefficient �. First, if the cavity is
run under perfectly matched conditions, � ¼ 0, and
the resulting fields are independent of the position of the
reference plane. Physically this is due to the fact that when
� vanishes, only an incoming traveling wave exists in the
input coupler, for which there is no reference plane. The
above equations also show that there are only two critical
values of � for which the equations for the fields reduce to
one of the two eigenmode solutions (either the electric or
magnetic solutions). These occur when the reflection co-
efficient is given by �� ¼ � exp½ið2k�yÞ�. In general,
these two critical values are complex and therefore not of
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interest when simulating cavities under normal operation
(where reactive beam loading is compensated using cavity
detuning and the reflection coefficient is real). Thus, in
general, to correctly model the fields near the couplers, one
must use both eigenmode solutions.

4. Finding the reference plane

The position of the reference plane is related to the phase
of the reflection coefficient �. This is seen by computing
the amplitude function of the total electric field in the
coaxial line:

j ~Eþþ ~E�j
¼1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þþA2�þ2AþA�cos½2kðy�yrefÞ����

q
:

The reference plane is defined as the position of the maxi-
mum of this function when the reflection coefficient � is
real and positive. If � has some nonzero phase, then the
position of the maximum in this function shifts by �y ¼
ð��=4�Þ�.

It is possible to compute yref using several solutions
from lossless eigenmode solvers [12]. When simulating
the cavity fields using the eigenmode solver, there is no
effect from a beam: Ib ¼ 0. In this limit, the reflection
coefficient for a real cavity becomes

� ¼
��1
�þ1 � i tanc 0

1þ i tanc 0 :

For strongly coupled cavities (� � 1), this quantity is
positive and close to unity when the cavity is run on
resonance. If the cavity is tuned very far from resonance
then c 0 ! ��=2. In this limit � ! �1, and �� ! ��.
This implies that the amplitude maximum will shift by
�y ¼ ��=4. Thus, if one can simulate the lossless cavity
model being detuned, then the position of the reference
plane can be computed. This is accomplished by terminat-
ing the coupler with an electric (or magnetic) wall at
several different positions. In general, MWS will produce
two modes of interest with frequencies near the actual
operating frequency ! of the real rf system. The coupler
and the cavity regions in the model form a pair of coupled
oscillators. Consequently, there will be two modes of os-
cillation: one with the fields in both regions oscillating in
phase together, and another where the fields in the two
regions oscillate out of phase. We call these modes the zero
and �modes of the cavity-coupler system. These labels do
not correspond to the zero and � resonant modes of the
cavity itself, the latter of which is considered the normal
mode of operation for the two cell cavities in the Cornell
ERL injector. Figure 3 shows the results of varying the
position of the electric wall condition and plotting the zero
and � modes of the global cavity-coupler system. In the
region where the two mode frequencies nearly intersect,
the ratio of the magnitudes of the fields in the coupler

region to those in the cavity region is a maximum. In terms
of a real cavity, this corresponds to tuning the cavity far
from resonance. This means that the reference plane is then
��=4 from this position:

yref ¼ yoffBC � �

4
: (18)

Here yoffBC is the position of the boundary condition when

the cavity is simulated off resonance. Setting the boundary
condition to this value makes it difficult to identify the
cavity � mode, which has a resonant frequency of
1300 MHz in the case of the Cornell injector cavity. This
can be seen in Fig. 3. The two modes plotted here have
frequencies which deviate from 1300 MHz when y ¼ yoffBC.

If the boundary position is moved by��=4 then, according
to (15), when one switches from the electric to magnetic
wall, this will be equivalent to running the simulation with
an electric wall at yoffBC. One must then place the boundary

in between yoffBC and yoffBC þ �=4. As long as the boundary

condition is not near these points and the coupler length is
large enough to accommodate the TEM mode, the position
of the boundary condition does not matter. Figure 4 shows
this invariance of the radial electric fields in the coaxial
input coupler at t ¼ 0. The fields shown are the combined
forward and reflected traveling waves for the case where
� ¼ 1. In this plot, the boundary condition has been varied
from yoffBC þ ð2=32Þ� to yoffBC þ ð6=32Þ�. In the figure, the

two fields with the shortest coupler length show the great-
est difference from the rest of the fields created, as is
expected. This does not invalidate the assumption that
the position of the boundary condition is invariant within
yoffBC and yoffBC þ �=4, but provides the first indication that it

may be necessary to add on length to the coupler in units of
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FIG. 3. Frequency of 0 and � modes in coupler region vs
coupler length.
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�=2 to ensure the proper standing wave pattern is achieved
near the boundary condition. This fact is addressed later on
when we give a systematic check of the field generation
algorithm.

5. Computing R=Q, Vc, and Qext

Having now defined all of the relevant cavity design and
operation parameters, and given the procedure for con-
structing the cavity fields assuming all of these parameters
are known, it is now time to address the problem discussed
in previous sections that many of the operating conditions
depend on the computed energy gain through the fields.
This means that the fields have actually been implicitly
defined in terms of themselves. In this section we resolve
this issue. In addition we also briefly describe a convenient
method for computing the external quality factor [7].

Because the injector cavities are designed to have large
Qext values, the fields in the cavity cells are standing
waves. This fact can be used to compute approximate
values for the cavity voltage Vc and R=Q. The quantities
are defined as

Vc ¼ ½�Wð�0Þ=e�
cos�0

; R=Q ¼ ½maxð�W=eÞ�2
!U

:

The total energy stored in the fields can be approximated
by noting

U ¼ �0
2

Z
cavity

jEj2dV ffi �0
2

Z
cells

jEj2dV;

assuming the cavity is not run far off resonance. This
approximation is valid because the majority of the energy

stored in the fields is found in the cavity cells. This means
that this quantity can be approximated by

U ffi �0
2

Z
cells

j�mE
mj2dV ¼ �2

m½Joule�;

since the standing wave field pattern in the cavity cells
should be roughly the same as the standing wave from the
MWS eigenmode solver. Here �m is a scaling factor used
to normalize the fields to the correct voltage. This can be
easily computed by tracking particles through the on-axis
field Em

z ðr ¼ 0Þ. The above equation makes use of the fact
that MWS normalizes the energy in its solutions to 1 J. The
solution Ee could also be used. Similarly,

�Wð�iÞ ffi e
Z

Re½�mE
m
z ðr ¼ 0Þei½!tðzÞþ�i��dz;

with the initial phase offset �i 2 ½0; 2��. We define �off

so that �Wð�offÞ ¼ max½�Wð�iÞ�. The effective cavity
voltage and R=Q are then explicitly given by

Vc ffi 1

cos�0

Z
Re½�mE

m
z ðr ¼ 0Þeið!tþ�offþ�0Þ�dz;

R=Q ffi 1

!�2
m

�Z
Re½�mE

m
z ðr ¼ 0Þeið!tþ�off Þ�dz

�
2
:

Figure 5 shows the results of computing the on-axis energy
gain as a function of initial phase of the cavity through both
the realistic fields, computed with the algorithm described
above (light blue line), and the fields generated by
MICROWAVE STUDIO using a magnetic wall boundary con-

dition (dark blue line). For this scan, the initial kinetic
energy of the beam KEi ¼ 1 MeV, the speed-of-light
cavity voltage V0 ¼ 1 MV, the average beam current Ib ¼
100 mA, the phase offset of the cavity �0 ¼ 30 deg (red
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FIG. 5. Checking the energy gain approximation scheme.
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line), Q0 ¼ 1010, Qext ¼ 4� 104, and the reactive beam
loading is compensated. The green line shows the com-
puted value of �W ¼ eVc cos�0, which intersects the
graph at the correct point. It is apparent that the energy
gain of both sets of fields is the same, verifying the as-
sumptions made for the computation of �W and R=Q.

The last quantity to compute before constructing the
realistic cavity fields is Qext. Several methods for comput-
ing Qext from two eigenmode solutions have been previ-
ously proposed [12,14]. We use a method prescribed by
Buckley and Hoffstaetter [7]. This method generally as-
sumes one input coupler, but is easily modified for the case
of several identical input couplers. Assume the cavity has
been excited by a generator to some voltage and the
generator then switched off. After some time, only waves
traveling out of the cavity will be present, and the fields
E� and B� can be used to compute Qext. First, the stored
energy in the cavity is computed:

U ¼ �0
2

Z
jE�j2dV ¼ �0

2

�
A�
Ae

�
2 Z ð	2jEmj2 þ jEej2ÞdV;

where 	 ¼ Ae=Am. The integrals over the electric fields are
known. MICROWAVE STUDIO normalizes the integrals over
each set of fields to 1 J. Thus, the total energy stored in the
cavity isU ¼ ðA�=AeÞ2ð	2 þ 1Þ. The power flowing out of
the coupler(s) is given by P� ¼ �

�0c
A2� lnðro=riÞ.

Combining these expressions gives

Qext ¼
�
1

2

��
	2 þ 1

	2

��
k

��0

�
1 Joule

ðAmÞ2 lnðro=riÞ
:

In this equation k ¼ !=c. The factor of 1=2 in brackets is
included for the case of the twin symmetric couplers used
in the Cornell injector cavity model. If the normalization of
the fields is different (or not known), the factor 	2 þ 1
becomes 	2Um þUe, which can still be computed directly
from the eigenmode fields. The realistic fields can now be
computed: first Vc, R=Q, and Qext are computed using the
above expressions. With these quantities and the rest of the
operating conditions, the forward and reflected power P�,
and the reflection coefficient � are computed. Then, using
(16) and (17), the cavity fields are constructed. The new
fields can be used to recompute Vc and the process iterated
until the field profiles converge to a unique result. In the
cases studied in this work, at most two iterations were
needed.

III. RF COUPLER KICKS

A. Generalizing the definition of the coupler kick

To quantify the effect of the input power couplers on the
linear beam dynamics of the cavity model, we generalize
the formulas for the normalized momentum change in
cavity. This is done by first examining the coupler kick,
as defined in the literature, and its connection to the
momentum change in the cavity. This leads to a natural

generalization of the momentum change in terms of the
transfer matrix elements through the cavity.
The normalized coupler kick, as defined by Dohlus [2],

is to linear order

kðx; yÞ ¼ Vðx; yÞ
ez 
 Vð0; 0Þ ¼

vx;0 þ vx;xxþ vx;yy

vy;0 þ vy;xxþ vy;yy

1þ vz;xxþ vz;yy

0
BB@

1
CCA;

where the complex voltage gain Vðx; yÞ is defined as

V ðx; yÞ ¼
Z
ð~Eþ cez � ~BÞeið!z=cÞdz:

Note that this definition assumes an ultrarelativistic and
therefore rigid beam. The coefficients vx;0 and vy;0 quan-

tify any voltage change (normalized to the on-axis voltage
gain) due to dipolelike fields. In general, any structure that
breaks the cylindrical symmetry of the cavity may contrib-
ute to these terms. The remaining coefficients quantify
both the focusing due to the cavity and the focusing due
to the input and HOM couplers. The normalized voltage
change can be directly used to compute the momentum
kick imparted to a particle traversing the cavity:

�p ¼
�
e

c

�
Re½kðx; yÞeið!s=cÞ�Vacc:

Here s denotes the position of a particle with respect to the
center of the beam.
The formula for the momentum change can now be

generalized by allowing the transverse and longitudinal
offset of particles moving through the cavity to vary. In
this case, the momentum change can still be related to the
initial particle offset from the reference particle, using the
transfer matrix elements:

�pðsÞ ¼
�px;0 þMpx;xx0 þMpx;yy0

�py;0 þMpy;xx0 þMpy;yy0

�pz;0 þMpz;xx0 þMpz;yy0

0
BB@

1
CCA:

Dividing by the change of the reference energy defines the
normalized momentum change through the cavity:

kðsÞ ¼ 1

�pz;0

�px;0 þMpx;xx0 þMpx;yy0

�py;0 þMpy;xx0 þMpy;yy0

�pz;0 þMpz;xx0 þMpz;yy0

0
BB@

1
CCA: (19)

1. Transfer matrix computation

For nonrelativistic beam energies the transfer matrix
elements cannot be computed using analytic or semiana-
lytic methods like those of Rosenzweig and Serafini [15].
A simple method, used by TEAPOT [9], to compute the
transfer matrix is to numerically differentiate particle tra-
jectories. We use an eighth-order implicit symplectic in-
tegrator [16] to track four separate particles. The transverse
phase space variables used are
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u ¼ ðx; 
�x; y; 
�yÞ: (20)

Each of the four particle trajectories is offset slightly in one
of the four phase space variables. Labeling the jth particle

trajectory as uðjÞ and its initial offset in the jth phase space
variable as �uðjÞ, the transverse transfer matrix elements
can then be computed using

Mij ¼
@uiðzfÞ
@ujðziÞ ffi

uðjÞi ðzfÞ
�uðjÞ

:

The initial offsets �uðjÞ must be made small enough so as
to avoid nonlinear effects, as well as to ensure the sym-
plecticity of the resulting transfer matrix. Using the sym-
plectic integrator with initial particle position and
momentum offsets of 10�15 meters, and 10�15½
�� respec-
tively, yields transfer matrices which preserve the sym-
plecticity of the system to near machine accuracy:
detðMÞ � 1� 10�15. Scanning the initial offsets between
10�4 and 10�14 shows little variation in the matrix ele-
ments themselves.

2. Off-axis expansion of the fields

Because we are only concerned with linear dynamics,
we can use an off-axis expansion of the fields (as opposed
to a full 3D interpolation) to speed up the particle tracking.
In general, the fields can be expanded around the beam axis
in the form

fðx; y; zÞ ¼ X1
n;m¼0

fðn;mÞðzÞxnym;

fðn;mÞðzÞ ¼ 1

m! 
 n!
@nþmf

@xn@ym

��������r¼0
:

The use of twin couplers in the cavity model imposes
mirror symmetry in the x-z and y-z planes. These symme-
tries imply

Exð�x; y; zÞ ¼ �Exðx; y; zÞ Exðx;�y; zÞ ¼ Exðx; y; zÞ
Eyð�x; y; zÞ ¼ Eyðx; y; zÞ Eyðx;�y; zÞ ¼ �Eyðx; y; zÞ
Ezð�x; y; zÞ ¼ Ezðx; y; zÞ Ezðx;�y; zÞ ¼ Ezðx; y; zÞ:

(21)

These conditions imply

E ¼ X1
n;m¼0

x2ny2m½ðEð2nþ1;2mÞ
x xÞx̂þ ðEð2n;2mþ1Þ

y yÞŷ

þ Eð2n;2mÞ
z ẑ�:

B ¼ X1
n;m¼0

x2ny2m½ðBð2n;2mþ1Þ
x yÞx̂þ ðBð2nþ1;2mÞ

y xÞŷ

þ xyBð2nþ1;2mþ1Þ
z ẑ�:

(22)

The expression for the magnetic fields follows directly
from the form of the electric field and Maxwell’s equa-
tions. For tracking we keep only the terms in the field
expansions to first order (the terms in brackets above
with n ¼ m ¼ 0):

E ffi xEð1;0Þ
x x̂þ yEð0;1Þ

y ŷ þ Eð0;0Þ
z ẑ;

B ffi yBð0;1Þ
x x̂þ xBð1;0Þ

y ŷ:
(23)

The first order transverse expansion coefficients in these
expressions can be expanded around the axisymmetric first
order coefficients. For axisymmetric fields the first order
coefficients have the form

Eð1;0Þ
x ¼ Eð0;1Þ

y ¼ Eð1Þ
r ; Bð0;1Þ

x ¼ �Bð1;0Þ
y ¼ �Bð1Þ

� ;

(24)

where the radial and azimuthal components are given by
[17]

Eð1Þ
r ¼ � 1

2

dEz

dz
ðr ¼ 0Þ; Bð1Þ

� ¼ i!

2c2
Ezðr ¼ 0Þ:

The superscripts in this equation denote the number of
derivatives taken with respect to the radial coordinate r.
For fields displaying the quadrupole symmetry described

in (21), one can define �E ¼ Eð1;0Þ
x � Eð1Þ

r and �B ¼
Bð1;0Þ
y � Bð1Þ

� . To the appropriate order, Maxwell’s equa-

tions then impose

Eð1;0Þ
x ¼ Eð1Þ

r þ �E Eð0;1Þ
y ¼ Eð1Þ

r � �E

Bð0;1Þ
x ¼ �Bð1Þ

� þ�B Bð1;0Þ
y ¼ Bð1Þ

� þ�B:
(25)

Figure 6 shows the first order expansion coefficients for the
electric field in the coupler region computed from
the general 3D field maps. It is clear from the figure that
the field expansion coefficients are of the form given in
(25). Similar agreement was found for the magnetic field
coefficients. The form of the fields in (23) shows directly
that the use of symmetric power couplers decouples the x
and y phase space variables and eliminates the dipole kick.
It is also apparent that the longitudinal momentum gain is
independent of the initial particle transverse offset to first
order. The equation for the coupler kick in (19) reduces to

k? ¼ �p?
�pz;0

¼ 1

�pz;0

Mpx;xðsÞx0
Mpy;yðsÞy0

 !
: (26)

We find it useful to look at the gradient of this quantity with
respect to the initial transverse offset:

� ¼ 1

�pz;0

Mpx;xðsÞ
Mpy;yðsÞ

 !
:

Plugging the linearized fields into the Lorentz force law
gives
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Fx ¼ ðFð1Þ
r þ �F Þx; Fy ¼ ðFð1Þ

r � �F Þy;
with Fð1Þ

r ¼ eðEð1Þ
r � c�Bð1Þ

� Þ, the axisymmetric radial fo-

cusing force gradient, and �F ¼ eð�E � c��BÞ. The

transverse gradients of these two forces satisfy

Fð1Þ
r ¼ 1

2ðFð1;0Þ
x þ Fð0;1Þ

y Þ:
From this it is tempting to write the transfer matrix ele-
ments in a similar form; however,

Mr;pr
� 1

2ðMx;px
þMy;py

Þ (27)

in general. Only in the ultrarelativistic limit does this
relationship hold. In this limit the focusing matrix elements
reduce to integrals over the transverse gradients of the
force components. The relative difference between �x

and �y can be quantified using

�x ¼ �x

�y

� 1; �y ¼
�y

�x

� 1; �� ¼ �x � �y

1
2 ð�x þ �yÞ

:

(28)

The last term reduces to ð�x � �yÞ=�r as v ! c, giving a

measure of the effect of the quadrupole focusing relative to
the ‘‘overall’’ focusing strength.

IV. CHECKING THE ALGORITHM

A. Computation of the transfer matrix

As the coupler kick is quantified in terms of the transfer
matrix elements, it is important to check both the accuracy
of the method to compute each element as well as the
symplecticity of the total transfer matrix. To check the
symplecticity of the transfer matrices, we compute
the determinant of the matrices as a function of z through
the cavity. Using the phase space variables in (20), the
determinant should be unity. We also compare the transfer
matrix elements to those computed using a simple ‘‘drift-
kick-drift’’ method which is inherently symplectic. The
results of these comparisons are shown in Fig. 7. The initial
offset of the phase space variables used in position and
normalized momentum is 10�15 m and 10�15½
��, respec-
tively. With these offsets, the determinant of the transfer
matrix is equal to unity to machine accuracy, as seen in
Fig. 7(a). The comparison of the transfer matrix elements
with the drift-kick-drift method, Fig. 7(b), shows good
agreement, indicating that either method could be used.
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FIG. 7. (a) Comparison of the transfer matrix determinant to unity. (b) Comparison of the symplectic ray differentiation algorithm
(blue) to the drift-kick-drift algorithm (green).
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Having two methods of computing the transfer matrix
elements is convenient for cross-checking and debugging.

B. Numerical issues

As mentioned before, it is important to accurately com-
pute the amplitudes of the sinusoidal fields in the coupler
region. The computation of these amplitudes depends
mainly on two things: the mesh size used to compute the
fields in MICROWAVE STUDIO, and the length of the coupler
section of the cavity model. For meshing the cavity we use
MICROWAVE STUDIO’s automatic meshing algorithm. The

parameters used by MICROWAVE STUDIO to define the mesh
are the lines per wavelength, lower mesh limit, and mesh
line ratio. For these simulations, we set all of these to the
same value. To test that we have found the correct mesh
size, the transfer matrix elements were computed for
meshes of 20, 30, and 40 lines=wavelength. In addition
to this, we added �=2 and � to the length of the coupler
section. The starting coupler length is yBC þ �=8. From
Eq. (18) it is clear that this should not have any effect on
the fields in the cavities or the position of the reference
plane. As we are interested in computing the transfer
matrix elements from the fields, we use the focusing ele-
ment to quantify the dependence on the mesh size and
coupler length. Figure 8 shows the focusing element in
the ðy; pyÞ phase space. The transfer matrix elements were

computed for a 100 mA beam, on-crest beam with initial
energy of 350 kV, and a 1MV cavity voltage. It is clear that
adding at least �=2 is required to the reduce the depen-
dence of the focusing element on the mesh size.
Consequently, the MWS solutions for the original coupler
length (labeledþ0 in the figure) are not used for any of the
studies in this work. For the þ�=2 and þ� cases, the
change with mesh size is roughly 2% when going from
20 to 40 lines=wavelength. The difference between the

elements computed for those two cases at each mesh size
is roughly 2% to 3%. This difference is likely being limited
by other factors: the residual tolerance of the MWS field
solutions, how accurately the cavity fields are phased and
normalized, and the resulting numerical integration and
differentiation of the particle trajectories through the fields.

C. Semianalytic check

One check of the algorithm to compute the coupler kick
is to take the ultrarelativistic limit of the transfer matrix
through the cavity. In this limit Vc ! V0 and R=Q !
220 �. This allows the computation of � without any
numerical integration. The fields can then be constructed
and compared to the general algorithm given above.
Figure 9 shows the ðx; pxÞ transfer matrix elements com-
puted with the general algorithm for constructing the fields
(blue) and the semianalytic algorithm in the � ¼ 1 limit
(green). The agreement in the matrix elements as well as
the fields is very good.

V. RESULTS

Having developed and tested a method for producing
realistic cavity fields and computing the coupler kick for
nonrelativistic beams, we turn to investigating the effect
for the Cornell ERL injector cavity model. As we will
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FIG. 9. Comparison of the general algorithm to the ‘‘� ¼ 1’’
algorithm.
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TABLE II. List of simulation input parameters.

Wi [MeV] Initial beam energy

Ib [mA] Average beam current

�0 [deg] Beam phase

Vc [MV] Effective cavity voltage

V0 [MV] Cavity voltage for � ¼ 1
Q0 Intrinsic quality factor

Qext External quality factor

tanc 0 Loaded detuning factor
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show, the results of these simulations demonstrate the need
to be able to model the coupler effects for a variety of input
conditions. The full set of input parameters required to
generate the fields in the Cornell cavity model is given in
Table II. In addition to the parameters listed in the table, we
also vary the orientation of the cavity (couplers at the
entrance or exit of the cavity as seen from the incoming
beam). In the Cornell injector the cavities are arranged so
that the first cavity is oriented with the coupler at the exit of
the cavity. The orientation of the subsequent cavities alter-
nates. We limit the number of parameters varied in our
simulations to a subset most often used in normal opera-
tion. The amount of coupling to the cavity is set for high
current running, as this should increase the effect of the
quadrupole focusing due to the couplers. To simulate this
geometry, the coupler antennas are inserted into the cavity
so that they are nearly flush with the beam pipe, setting
Qext to 4:6� 104. By making the antennas fully flush in
the cavity model, the Qext calculated from the fields is
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FIG. 10. Scans of the initial beam kinetic energy for both orientations of the cavity model.
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4:02� 104. This corresponds to roughly 1 mm difference
in the insertion depth of the coupler and is therefore
considered acceptable for simulating the high current setup
of the injector cavities. In general, the cavities may be run
slightly off-crest in order to minimize growth of the pro-
jected emittance through the cryomodule. We simplify this
by simulating the cavity fields on-crest, as the offsets in the
injector phases are usually less than 5 deg. Also, during
normal operation, any reactive beam loading is compen-
sated by detuning the cavity. These two restrictions imply
sin�0 ¼ tanc 0 ¼ 0. The remaining parameters left to vary
then include the initial kinetic energy of the beam, the
average current, and the cavity voltage.

A. Kinetic energy scans

It is instructive to scan the initial kinetic energy of the
beam first. The current voltage of the ERL DC gun used in
beam operations is 350 keV. For proposed high current
runs (100 mA average current), the beam is accelerated
from the gun voltage to roughly 5 MeV in the cryomodule.
It is also instructive to look at the quadrupole focusing in
the ultrarelativistic limit. We perform two scans of the
initial kinetic energies: one from the gun voltage to
5 MeV (the injector parameters), and the second from
5 MeV to 1 GeV (ultrarelativistic limit), for both cavity
orientations. Figure 10 shows the results of both scans for a
1 MV cavity gap voltage.

For the low energy scan, the first thing to note is that the
mean focusing effect is approximately the same for both
cavity orientations in both energy scans. This implies the
majority of the focusing occurs in the cavity cells. In
general, the quadrupole strength has different behavior
for both orientations, as shown in Fig. 11. For the case

where the coupler is at the entrance to the cavity �� starts at
�161% and sharply increases to around �11% as the
initial energy increases. When the coupler is at the exit,
�� decreases from �1 to �36% in an essentially linear
fashion. In both cases the overall focusing and the quad-
rupole effect should become asymptotic as the particles
become ultrarelativistic. Figures 10(c) and 10(d) show that
the these asymptotic values are quite different from the
values at 5 MeV. The asymptotic values are �1138 and
2168% for the coupler at the entrance/exit, respectively.
The difference in sign is due to the fact that the mean of �x

and �y is near zero and has a different sign for each cavity

orientation. Table III gives the values of the quadrupole
strength relative to the mean focusing for initial kinetic
energies near those at the entrance to each of the five
cavities in the injector, as well as the asymptotic values.
The most significant result here is that the quadrupole
effect becomes very pronounced at low initial energy if
the input couplers are located at the cavity entrance. The
opposite is true when the couplers are at the cavity exit,
here the quadrupole effect is larger at higher energy
(5 MeV in the injector). Also, in the ultrarelativistic limit,
the quadrupole effect becomes increasingly more impor-
tant as the mean focusing vanishes.

B. Current scans

The dependence of the linear focusing as a function of
beam current is also of interest, as the current will have to

TABLE III. Relative quadrupole strength vs initial beam en-
ergy.

KEi [MeV] 0.35 1 2 3 4 5 � ! 1
��ent [%] �161 �8 �7 �8 �9 �11 �1138
��exi [%] �1 �8 �15 �22 �29 �36 2168

0 20 40 60 80 100
14

12

10

8

6

4

2 x 10
5

I
b
 (mA)

 (
m

m
1 )

x

y

mean

0 20 40 60 80 100
8.5

8

7.5

7

6.5
x 10

5

I
b
 (mA)

 (
m

m
1 )

x

y

mean

FIG. 12. Current scan from 0 to 100 mA for an initial beam energy of 350 keV and the couplers located at the entrance (a), and the
couplers located at the exit (b).
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be ramped up to 100 mA in proposed experiments in the
injector. Figure 12 shows the results of scanning the current
from 0 to 100 mA for a 350 keV initial beam energy, and a
1 MV cavity voltage. Figure 12(a) shows the current scan
when the couplers are located at the entrance of the cavity.
In this case, the quadrupole strength is strong; however, the
dependence on the current is small. When the couplers are
at the exit of the cavity [Fig. 12(b)], the dependence on
current is more pronounced, with the quadrupole effect
decreasing roughly linearly to near zero at 100 mA.
Initially, both of these plots contained a noticeable amount
of noise. This noise is caused by ‘‘jitter’’ in the on-crest
phase offset, �off , used to phase the cavity properly. To
eliminate this noise, we fit a polynomial to the plot of �off

as a function of the beam current and used the polynomial
to evaluate �offðIbÞ in a second current scan. The depen-
dence of the quadrupolelike focusing on the beam current
demonstrates an important point for beam operations, as
having current dependent focusing in the linear optics will
effect the centroid motion. Thus, in addition to the effects
of space charge, the dependence of the coupler focusing on
current will have to be properly accounted for.

VI. CONCLUSION

We have developed and tested an algorithm for produc-
ing realistic field maps for superconducting rf cavities from
eigenmode solver solutions. The algorithm incorporates
the effects of beam loading and detuning, and is general-
ized to include the acceleration of nonrelativistic beams. In
addition we have generalized the definition of the coupler
kick to correctly describe the linear optics for low energy
beams. Fields for the rf cavities in the Cornell ERL injector
have been created for various initial beam energies and
average currents. The rf quadrupole focusing produced by
the input couplers has been computed for these fields and
shown to be significant for certain beam parameters and
cavity orientations. The algorithm given in this work as-
sumes that the single bunch beam loading is small enough
that the condition

�Ub=U � 1

holds. While the fields generated in this work generally
satisfied this requirement with the single bunch loading on
the order of 10�5 to 10�4, further study may be warranted
to place a stricter bound on�Ub=U. In addition, since only
the linear beam dynamics have been computed here, the
effects of space charge and wakefields must be included for
a full model of the cavity-beam dynamics at high current.
In closing, we note that, once one finds the reference plane
and correct length of the coupler(s) for a given cavity

model, the field generation algorithm described in this
work can be included in any tracking code that can handle
complex electromagnetic field maps and can compute the
on-axis energy gain of particles through each cavity. This
allows for its possible inclusion in both offline and online
simulation codes.
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