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We present a new method for computing the transverse transfer matrix for superimposed axisymmetric

rf and solenoid field maps. The algorithm constructs the transfer matrix directly from one-dimensional rf

and solenoid field maps without computing numerical derivatives or eigenfunction expansions of the field

map data. In addition, this method accurately describes the dynamics of low energy particles starting from

a solenoid-immersed cathode, allowing the method to simulate transport through both rf and electrostatic

guns. Comparison of particle tracking with the transfer matrix, and direct integration of the equations of

motion through several field setups, shows excellent agreement between the two methods.
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I. INTRODUCTION

Linear transfer matrices continue to serve as important
simulation tools in the design, commissioning, and opera-
tion of modern accelerators. Common examples of their
use include the computation of linear centroid motion,
beam-based alignment of optical elements, and orbit
feedback. In addition, they feature prominently in the
theory of round-to-flat beam transforms in rf and DC
guns [1,2], and are used for emittance measurements for
beams without space charge [3]. Because of this utility,
analytic expressions for the transfer matrix through many
beam line elements, such as magnets with constant fields,
are well known and are widely used. In contrast to these
simple elements, the fields of many beam line elements in
modern accelerators have no analytic form and may over-
lap each other. For example, in high brightness electron
sources, solenoid fields used for emittance compensation
may overlap the accelerating fields at or near the cathode.
To properly describe the dynamics in these machines, the
transfer matrix through superimposed rf and solenoid fields
must be constructed. In general, to model these elements,
one must use numerically computed electromagnetic field
maps. Unfortunately, no closed form solutions for the
transfer matrix through such elements exist.

Nonetheless, a significant amount of work has gone into
developing both semianalytic and numerical techniques to
compute these matrices. In general, these techniques re-
quire some form of manipulation of the field map data and
often have a limited range of validity. For example, the
widely used rf transfer matrix given by Rozensweig and
Serafini [4] requires a Floquet expansion of the on-axis rf
field map, and is only valid for ultrarelativistic particles.
Other methods expand the field map data in terms of the

general solution to the homogeneous Maxwell equations
in cylindrical coordinates [5,6]. From this expansion, the
vector potential can be computed, allowing the
Hamiltonian for the overlapping solenoid and rf fields to
be constructed. When combined with differential and Lie
algebra techniques, this method is quite powerful and can
be used to generate arbitrary order maps. Despite this, it
requires significant overhead in setting up, and it may not
be suitable for online modeling purposes. A simpler solu-
tion has been put forth in [7]. In this approach, the particle
energy and rf fields are assumed constant over a small
time step. The second order linear transverse equations of
motion can then be solved ‘‘exactly,’’ and the transfer
matrix for the time step constructed. While this method
works well for relativistic particles, it does have several
drawbacks. First, the assumption that the energy is constant
requires extremely small time steps for very low energy
particles like those emitted from a photocathode. Second,
the determinant of the resulting transfer matrix is only
correct to first order in the step size. Another simple
approach is given in [8,9], and makes use of the ‘‘equiva-
lent field’’ concept. While this method guarantees the
correct determinant of the transfer matrix, it assumes a
constant velocity over each integration step and is therefore
not valid for very low particle energies. Alternatively, one
can also compute the transfer matrix elements from the
equations of motion directly using numerical integration
[10]. In general, this requires computing numerical
derivatives of the field maps (or differentiating orbits).
Additionally, in order to properly capture the dynamics
of the problem, some care must be taken to ensure the
integrator used truly maintains symplecticity [11].
To our knowledge, there is currently no simple, inher-

ently symplectic method of computing the transfer matrix
directly from superimposed rf and solenoid field maps for
low particle energies. Because no analytic solution for the
transfer matrix through the field of an entire rf cavity or
solenoid exists, any attempt at constructing a simple algo-
rithm for low energy dynamics will require multiple steps.
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Given the availability of numerical integrators, any new
algorithm must satisfy the following three requirements in
order to be useful: (i) using reasonable step sizes, the
method should be able to describe the low energy dynam-
ics found in rf or DC guns; (ii) the method should generate
matrices with the correct determinant, regardless of the
step size; and (iii) the method for constructing the transfer
matrix should be easy to implement. Based on a new
analytic solution to the equations of motion, we derive a
transfer matrix algorithm with all three of these qualities.

The layout of this work is as follows. First, the longitu-
dinal equations of motion are solved for a single small step
in the independent variable. Then, the transfer matrix over
the same step is derived for electrostatic and solenoid
fields. Building on this result, the matrix for combined rf
and solenoid fields is computed. This matrix is then tested
with tracking through a DC gun, a superconducting rf
cavity, and a rf gun with a solenoid-immersed cathode.
Excellent agreement between the transfer matrix and direct
integration of the equations of motion is demonstrated in
all three cases.

II. DERIVATION OF THE TRANSFER MATRIX

In order to treat both standing wave and traveling wave
rf structures, the rf fields are written in complex phasor

form: E ¼ ~Eðx; y; zÞei!t and B ¼ ~Bðx; y; zÞei!t. In these
and all subsequent expressions, tildes are used to denote
phasor quantities. For notational simplicity, the phase fac-
tor ei!t and the real symbol Re½. . .� are suppressed in all
but the final results for the transfer matrix. The beam line
axis is taken to point along the positive z axis. Derivatives
with respect to z are denoted with a prime: f0 � df=dz.
The equations of motion for the longitudinal phase space
variables t and � are

t0ðzÞ¼ 1

�ðzÞc; ~�0ðzÞ¼ e~Ez

mc2
¼ ~Ez=Ee; �0 ¼Re½~�0ei!t�:

(1)

Here the constant Ee ¼ mc2=e gives the (signed) rest
energy of the electron in (eV). Assuming cylindrically
symmetric fields, the linearized transverse equation of
motion in the Larmor frame takes the form [12,13]

�00
L þ p0

p
�0
L þ

�
�~E0

z

2Eep
2
þ i!~�0

2cp
þ ð��0LÞ2

�
�L ¼ 0: (2)

In this expression �L stands for both the transverse Larmor
coordinates xL and yL, p ¼ �� is the normalized reference
particle momentum, and ��L is the Larmor angle, defined
by

��LðzÞ ¼ �
Z z

zi

cBz

2Eep
dz; ��0L ¼ � cBz

2Eep
: (3)

Note the use of a negative sign in front of the integral. With
this definition, a positive solenoid field creates a positive

change in the Larmor angle for electrons. Because all of
the following derivations are carried out in the Larmor
frame, the subscript L on the transverse variables is sup-
pressed in the remainder of this work.
As stated before, general solutions to the differential

equations in Eqs. (1)–(3) do not exist for arbitrary cavity
and solenoid field maps. As a result, any method for
computing the transfer matrix analytically requires some
form of approximation to these equations. The approach
taken in this work is to find an exact solution to the
equations of motion for a step in z and t that is small

enough so that the field profiles ~EzðzÞ and ~BzðzÞ, as well
as the rf phase, do not change appreciably. The solution is
exact in the sense that the particle energy changes correctly
over the course of the step. The change in the field map
profile as well as the rf phase are then included with the use
of edge-focusing matrices. Slicing the field maps and con-
secutively multiplying the matrices for each step gives the
total transfer matrix:

Mðzi ! zfÞ �
Y
k

�Mðzk ! zk þ �zÞ: (4)

The first step in constructing the transfer matrix for one
step is to solve the longitudinal equations of motion in
Eq. (1). To do so the electric and magnetic fields are
assumed constant and equal to their average value over
the step from zi to zf:

E zðzÞ ffi hEzi; BzðzÞ ffi hBzi: (5)

For a constant electric field, �0 ffi hEzi=Ee is constant, and
the normalized energy, momentum, and velocity are given
by

�ðzÞ¼�iþ�0ðz�ziÞ; pðzÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�iþ�0ðz�ziÞ�2�1

q
;

�ðzÞ¼pðzÞ=�ðzÞ: (6)

Using these expressions, the derivatives of tðzÞ and ��LðzÞ
in Eqs. (1) and (3) can be directly integrated:

tðzÞ ¼ 1

c�0 ½pðzÞ � pi�; (7)

��LðzÞ ¼
�
b

�0

�
ln

�
pðzÞ þ �ðzÞ
pi þ �i

�
: (8)

In the last line, the constant b is the normalized solenoid
field defined as b ¼ p ���0L ¼ �ehBzi=2mc [14]. Note
that the expression for time given here is essentially the
same as Eq. (7) in [15]. For simplicity and speed, we take
the average values here to be equal to the fields evaluated at
the midpoint of the step. In addition to defining the trans-
formation between the lab and Larmor coordinates, the
function ��L plays an important role in the derivation of
the transfer matrix for both the electrostatic and rf field
cases.
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A. Overlapping electrostatic and solenoid fields

The derivation of the transfer matrix for superimposed rf
and solenoid fields is based in part on the method used to
derive the transfer matrix for static fields [3]. In this
section, a detailed derivation of the static field result is
given. The same techniques are then modified and used to
derive the rf matrix in the following section. For static
fields, the equation of motion is found by taking ! ! 0 in
Eq. (2):

�00 þ p0

p
�0 þ

�
�E0

z

2Eep
2
þ ð��0LÞ2

�
� ¼ 0: (9)

Note that p0 / hEzi and ��0L / hBzi in this expression,
implying � depends on both the accelerating field and its
gradient, as well as the solenoid field. The transfer matrix
from zi to zf ¼ zi þ �z is derived in a three-step process.

Over the interval ½zi; zf�, the electric and magnetic fields

are approximated as rectangular step functions. Formally
the fields are written as

EzðzÞ ffi hEzif�ðz� ziÞ � �ðz� zfÞg;
E0
z ffi hEzif�ðz� ziÞ � �ðz� zfÞg;

BzðzÞ ffi hBzif�ðz� ziÞ � �ðz� zfÞg;
B0
z ffi hBzif�ðz� ziÞ � �ðz� zfÞg; (10)

where �ðzÞ is the Heaviside step function, and �ðzÞ is the
Dirac delta function. The transfer matrix is then found by
solving the transverse equation of motion piecewise from
zi to zf.

First, the equations of motion are integrated across the
rising edge of the electric field at zi. Because the rising
edge is approximated as an instantaneous step, the parti-
cle’s position does not change: �ðzþi Þ ¼ �ðz�i Þ ¼ �ðziÞ.
Integrating the equation of motion gives the kick delivered
to the particle’s trajectory [4,14]:

��0 ¼ �
Z ziþ�

zi��

�
p0

p
�0 þ

�
�E0

z

2Eep
2
þ ð��0LÞ2

�
�

�
dz

¼ �
Z ziþ�

zi��

hEzi
2��2Ee

�ðzÞ�ðz� ziÞdz

¼ � �0

2�i�
2
i

�ðziÞ:

The corresponding transfer matrix for the rising edge, RE,
takes the form

REð�; �0Þ ¼
1 0

� �0
2��2 1

 !
: (11)

Next, the equation of motion is solved across the interval
ðzi; zfÞ, where both the electric and magnetic field are

approximately constant. In this region, the equation of
motion reduces to

�00 þ �0

��2
�0 þ ð��0LÞ2� ¼ 0; (12)

where ��0LðzÞ / 1=pðzÞ. With the electric field held con-
stant, �, p, �, and ��L are given by Eqs. (6) and (8). With
these functions, the differential equation can be solved by
assuming � ¼ �ð��LÞ. Plugging this into Eq. (12) gives

ð��0LÞ2
�
d2�

d�2L
þ �

�
þ d�

d�L

�
��00L þ �0

��2
��0L

�
¼ 0: (13)

Using Eq. (8), it is possible to show ��00 ¼ ��0��0=��2,
canceling the second term in the above equation. Assuming
��0 � 0, the first term in this expression must also vanish.
It follows that � ¼ A cos��L þ B sin��L. Completing the
initial value problem for this solution determines the trans-
fer matrix for the step from zi to zf:

Mi!f ¼
C pi

b S

� b
pf
S pi

pf
C

0
@

1
A: (14)

In this and following expressions, C � cos½��LðzÞ�, and
S � sin½��LðzÞ�.
The last step in constructing the full matrix for the

interval ½zi; zf� is to evaluate the transfer matrix for the

falling edge of the accelerating field. The result is essen-
tially the same as before, except now the derivative of the
electric field has the opposite sign. This allows the transfer
matrix for the falling edge to be written as

R�1
E ð�;�0Þ ¼

1 0
�0

2��2 1

 !
: (15)

Combining the three matrices for each region gives the full
transfer matrix for the step �z:

�Mdc
x;x0 ¼R�1

E ð�f;�
0ÞMi!fREð�i;�

0Þ

¼
1 0
�0

2�f�
2
f

1

0
@

1
A C pi

b S

� b
pf
S pi

pf
C

0
@

1
A 1 0

� �0
2�i�

2
i

1

0
@

1
A: (16)

One important thing to note about the matrix in Eq. (16) is
that it has the correct determinant for the phase space
variables chosen: detð�Mdc

x;x0 Þ ¼ pi=pf. The transfer ma-

trix for the canonical phase space variables x and px can be
found by applying the transformation:

�Mdc
x;px

¼ 1 0

0 pf

 !
�Mdc

x;x0
1 0

0 1=pi

 !
: (17)

It follows from this expression that the matrix �Mdc
x;px

satisfies the symplectic condition detð�Mdc
x;px

Þ ¼ 1. In ad-

dition to this, the transfer matrix also has the convenient
feature that the derivative of the accelerating field never
has to be calculated, bypassing the need to compute de-
rivatives numerically. It is important to note that the rising-
edge matrix should not be included in Eq. (16) when the
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electric field is nonzero at the initial position of the refer-
ence particle. Including the edge matrix in this case is
equivalent to a particle seeing the field rise from zero to
the actual value at the initial reference position. For parti-
cles starting from a cathode, this is not physical. Similarly,
the falling edge matrix should not be included when track-
ing of the reference particle stops in a region of nonzero
electric field.

B. Overlapping rf and solenoid fields

With the results for the electrostatic field determined, it
is now possible to construct the transfer matrix for rf fields.
The approximation used here is similar to that used in the

electrostatic case: the field profiles ~Ez and Bz, as well as the
rf phase, are assumed constant over the step �z. This
implies ~�ðz; tÞ is also constant, allowing the solutions to
the longitudinal equations of motion in Eq. (6) to be used.
Over the interval ðzi; zfÞ, the general equation of motion in

Eq. (2) reduces to

�00 þ ~�0

��2
�0 þ

�
i!~�0

2cp
þ ð��0LÞ2

�
� ¼ 0: (18)

Because the rf magnetic focusing term proportional to !
scales as p�1 and not p�2 / ð��0LÞ2, the solution to the
equation of motion used in the electrostatic case is no
longer valid. In the constant field and phase approximation,
this term introduces a square root of a quadratic in z into

the equation of motion: p�1 ¼ ½ð�i þ �0�zÞ2 � 1��1=2.
The presence of this factor makes this equation difficult
to solve. To our knowledge no analytic solution exists.

In order to proceed, the rf magnetic focusing term must
be removed from Eq. (18). Changing variables to reduced
coordinates, defined by �̂ ¼ ffiffiffiffiffiffiffi

��
p

�, provides a clue as to
how to remove this term. To see this requires transforming
the general equation of motion in Eq. (2) first, and then
making the constant field and phase approximation. The
general equation of motion for the reduced variables is
[12,14]

�̂ 00 þ
�ð~�0Þ2ð�2 þ 2Þ

4ð�2 � 1Þ2 � i!~�0

2cp3
þ ð��0LÞ2

�
�̂ ¼ 0: (19)

Unfortunately, the rf magnetic focusing term, now propor-
tional to p�3, still contains a square root in the denomina-
tor, and the reduced equation of motion does not have an
analytic solution. It is important to note, however, that
switching to the reduced variables effectively removes

the rf electric contribution (the term proportional to ~E0
z)

to the focusing function [14]. This implies that a similar
variable transformation can be used to eliminate the rf
magnetic focusing term. It turns out that such a trans-
formation is possible, and requires switching the indepen-
dent variable from longitudinal position to time. Doing so
yields the equivalent equation of motion:

€�þ _~�

�
_�þ

�
c2~E0

z

2�Ee

þ c�
i!~�0

2�
þ ð� _�LÞ2

�
� ¼ 0: (20)

Next, the coordinates are transformed to the new reduced
variables defined by �� ¼ ffiffiffiffi

�
p

�. In matrix form, this trans-

formation is written as

��

_��

 !
¼ �T

�

�0

 !
; Tð�Þ ¼ 1 0

0 c�

 !
;

�ð�; _~�Þ ¼ ffiffiffiffi
�

p 1 0
_~�

2� 1

 !
: (21)

As before, the equation of motion for the reduced variables
takes the form of Hill’s equation:

€��þ
�
_p2ðp2 � 2Þ
4ðp2 þ 1Þ2 þ

c2~E0
z

2�3Ee

þ ð� _�LÞ2
�
�� ¼ 0: (22)

Comparing Eqs. (19) and (22) shows that switching the
independent variable and using the new reduced coordi-
nates effectively exchanges the roles of the functions � and
p. Additionally, switching between the two sets of reduced
coordinates allows one to choose which of the two rf
focusing terms to hide in the variable transformation.
With the new definition of the reduced coordinates, all

that remains now is to solve Eq. (22) in the region where
the solenoid and accelerating fields are constant. This
requires knowing the functions pðtÞ and �ðtÞ. The momen-
tum is easily found by rearranging Eq. (7): pðtÞ ¼ pi þ
c�0ðt� tiÞ. The normalized energy is then given by �ðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðtÞ þ 1

p
. Inserting these expressions into the equations

of motion in the constant field region yields

€��þ
�ðc~�0Þ2ðp2 � 2Þ

4ðp2 þ 1Þ2 þ ðbcÞ2
p2 þ 1

�
�� ¼ 0: (23)

Note that by approximating the fields as constant after
changing variables, the rf electric focusing term propor-

tional to ~E0
z�

�3 in Eq. (22) is set to zero in the transformed
equation of motion. This eliminates the presence of any
square roots in the resulting focusing function, and effec-
tively breaks the normal equivalence between using the
two sets of independent variables and reduced coordinates.
Equation (23) can be solved with the function �� ¼ffiffiffiffi
�

p ðA cos��L þ B sin��LÞ. The transfer matrix is found

by completing the initial value problem for this solution.
The resulting matrix can be written in the compact form

�M rf
i!f ¼ �ð�f; _~�fÞTð�fÞMdc

i!fT
�1ð�iÞ��1ð�i; _~�Þ: (24)

In this expression _~�f ¼ c�f ~�
0. The matrix in Eq. (24)

correctly describes the evolution of the reduced variables.
In order to get the transfer matrix for the usual phase space
variables, it must be transformed back:
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Mrf
i!f ¼ T�1ð�fÞ��1ð�f; _~�fe

i!�tÞ�ð�f; _~�fÞTð�fÞMdc
i!f:

(25)

It is clear from this expression that the effects of the rf
magnetic focusing must be contained in the matrices left
multiplying Mdc

i!f. Combining these matrices together

gives

Rrf ¼ T�1ð�Þ��1ð�; _~�ei!�tÞ�ð�; _~�ÞTð�Þ

¼ 1 0
~�0
2� ð1� ei!�tÞ 1

 !
: (26)

In the limit that �t ¼ t� ti is small, this matrix reduces to

Rrf �
1 0

� i!~�0
2cpi

�z 1

 !
: (27)

From Eq. (2), it is clear that this is nothing but a thin lens
approximation to the focusing delivered by the rf magnetic
field. The complete matrix for the step �z is found by
including the effects of the field edges. The effect of adding
the time dependence to the edge matrices is minimal; the
rising-edge matrix remains the same. For the falling edge
matrix, the change in the rf phase is included in the electric
field: ~�0

f ¼ ~�0ei!�t. Adding the edge matrices to Eq. (25)

gives

�Mrf
x;x0 ¼R�1

E ð�f; ~�
0ei!�tÞRrfð�f; ~�

0;ei!�tÞMdc
i!fREð�i; ~�

0Þ

¼
1 0

Re½~�0ei!ðtiþ�tÞ�
2�f�

2
f

1

0
@

1
A 1 0

1
2�f

Re½~�0ð1�ei!�tÞei!ti� 1

 !

�
C pi

b S

� b
pf
S pi

pf
C

0
@

1
A 1 0

�Re½~�0ei!ti �
2�i�

2
i

1

0
@

1
A: (28)

This is the main result of this work. As a reminder, ~�0 ¼
e~EzðziÞ=mc2, where ~Ez is the complex electric field map.
Additionally, the expressions for �, p, and�t can be found
in Eqs. (6)–(8), respectively. For clarity we leave the result
in the above factorized matrix form. This allows several
limiting cases to be easily evaluated. First, in the limit that
both the rf and solenoid fields vanish, b, ~�0 ! 0, and
Eq. (28) reduces to a drift matrix. For vanishing rf fields,
~�0 ! 0, and Eq. (28) reduces to a hard edge solenoid
matrix. In the limit that ! ! 0, Rrf reduces to I2�2, and
the total rf matrix reduces to the previous electrostatic
result in Eq. (16). In addition to having the correct limiting
behavior, the rf transfer matrix also has the correct deter-
minant: det½�Mrf

x;x0 � ¼ det½�Mdc
x;x0 � ¼ pi=pf. This follows

directly from the fact that det½Rrf� ¼ 1. The factorized
matrix form in Eq. (28) also clearly demonstrates the
dynamics of a step through overlapped rf and solenoid
fields: focusing from the change in the accelerating field,
rotation from the solenoid, compression from acceleration,
as well as focusing from the rf magnetic field. Additionally,
because the analytic form depends only on the reference

TABLE I. Simulation parameters.

Field setup Voltage Phase Maximum Bsol Kinetic energy (z ¼ zi) Step size type Step size

DC gun & solenoid 500 kV 0 0.04 T 1 eV Fixed 1 mm

SRF cavity 3 MV On-crest 1 MeV Fixed 2 mm

rf gun & solenoid 1 MV On-crest 0.04 T 1 eV Adaptable 0.1 mm (avg.)

FIG. 1. The fields and energy gain for a 500 kV gun voltage, 0.04 T maximum solenoid field setting, and 1 eV initial kinetic energy.
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trajectory defined by tðzÞ, �ðzÞ, ��LðzÞ, and the field maps
at the same position, these quantities do not have to be
computed using Eqs. (6)–(8). This allows one to construct a
transfer matrix directly from the reference and field data
output from any simulation code if desired.

III. TESTING THE TRANSFER MATRIX

To test the validity of our approach, the energy gain and
transfer matrix are calculated through three different field

setups and compared to direct integration of the equations
of motion using a fourth order Runge-Kutta algorithm. The
three field setups used are a DC gun with overlapping
solenoid, a superconducting radio frequency (SRF) cavity,
and a rf gun with a solenoid-immersed cathode. To check
that the transfer matrix correctly describes the transverse
dynamics in each case, all four transfer matrix elements are
compared with Runge-Kutta integration. To do so, the two
principle trajectories through each field setup are com-
puted. These trajectories are defined by the initial phase

FIG. 2. Comparison of Runge-Kutta integration (blue) and the tracking using the transfer matrix (green) through the DC gun and
solenoid fields.

FIG. 3. The field map for the SRF injector cavity and the corresponding energy gain. The cavity voltage is 3 MV, the initial kinetic
energy is 1 MeV, and the phase is on-crest.
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space coordinates u1 ¼ ð1 mm; 0ÞT, and u2 ¼
ð0; 1 mradÞT. Table I shows the various settings used in
each simulation.

For the first simulation, we use the fieldmaps for the high
voltage DC gun and first emittance compensation solenoid
of the Cornell ERL injector prototype. Figure 1(a) shows
the field maps corresponding to gun voltage and solenoid
field strength given in Table I. Figure 2 shows how the
energy gain computed from the constant field solution in
Eq. (6) compares to the energy gain computed using Runge-
Kutta integration. The step size used for the constant field
solution is 1 mm. The agreement between the two methods
demonstrates that the constant field solution works very

well for the longitudinal variables, even for low initial
kinetic energies. Figure 2 shows the results of tracking the
principle trajectories using both the rf transfer matrix with
! ¼ 0, and Runge-Kutta integration. As with the longitu-
dinal variables, the agreement between both methods of
tracking is excellent. In addition to these results, the ex-
pression for the electrostatic transfer matrix has been ex-
perimentally verified in [3]. Next, the two principle
trajectories are computed through the field map of the
1.3 GHz Cornell ERL injector SRF cavity. Figure 3(a)
shows the on-axis electric field map of the SRF cavity
model with a 3 MV cavity voltage. The corresponding
energy gain through the cavity, computed using the constant

FIG. 4. Comparison of direct integration (blue) and tracking using the transfer matrix (green) of the two principle trajectories.

FIG. 5. The fields and energy gain for the rf gun setup. The cavity field is scaled so that the cavity voltage is 1 MV, and the phase is
set to the on-crest value for a 1 MeV electron.
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field solution and Runge-Kutta integration, are shown in
Fig. 3(b). The results of tracking the two principle trajecto-
ries through the cavity, with a fixed step size of 2 mm, are
shown in Fig. 4. As in the electrostatic case, the agreement
is very good. Finally, the principle trajectories are com-
puted through the rf gun setup. To simulate an rf gun, the
last 1.5 cells of the injector cavity field map are used. The
solenoid field is positioned so that the maximum value of
the solenoid field occurs at the cathode. In order to make
sure that the rf phase is constant over each step, a simple
adaptive step size algorithm is included. This algorithm
adjusts the step size so that the change in rf phase over
the step is less than a user-defined tolerance. Figure 5(a)
shows field maps for the rf gun setup. The corresponding
energy gain through the gun is shown in Fig. 5(b). The
accelerating field is scaled so that the rf cavity voltage is
1 MV and the phase is set for maximum acceleration. The
tracking results for the two principle trajectories are shown
in Fig. 6. From the figure, it is clear that the transfer matrix
works well in the low energy case. The average step size for
the simulation was roughly �z ¼ 0:1 mm.

IV. CONCLUSION

We have derived and tested a newmethod for calculating
the 4� 4 transfer matrix through superimposed rf and
solenoid fields. The algorithm computes the transfer matrix
directly from the field data without computing eigenfunc-
tion expansions or numerical derivatives. Comparison with
numerical integration demonstrates that this new method
works for low energy beams starting from a solenoid-
immersed cathode. Additionally, because the algorithm
relies on analytic solutions to the equations of motion, it

is simple to implement and guarantees the correct value for
the determinant of the transfer matrix. One limitation to
this approach is the assumption (inherent in the derivation)
that the fields display cylindrical symmetry. For many
applications this is a reasonable assumption; however,
previous work shows that asymmetric focusing from input
power couplers may be noticeable when heavy beam load-
ing is present [11]. In addition, when tracking ultrarelativ-
istic particles, the algorithm takes steps typically on the
order of a few millimeters, and therefore may not be the
best choice for computational speed. In this case, one may
still choose to use the Rosenzweig-Serafini matrix.
Nonetheless, the matrix algorithm given here strikes an
appropriate balance between accuracy, speed, and simplic-
ity not previously achieved.
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