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Abstract

The niobium superconducting accelerating cavities used
in many contemporary accelerators require tuning to a
working frequency after fabrication. This tuning is nec-
essary because small variations between cells can substan-
tially alter the field profile and decrease the accelerating
rate. ANSYS simulations are done to understand changing
of the initial shape due to plastic deformations at tuning.
Simulations are presented for inner cells of a multicell cav-
ity and for the end group including the end cell and the
beam pipe. The tuning device has different contact areas
on the cell surface where the force is applied, so stretching
and squeezing the cavity cell are studied separately. The
influence of the stiffening rings is also studied. The cavity
tuned to the working frequency with the tuning device has
a shape different from the designed shape. So, parameters
of the higher order modes (HOMs) excited by the beam
will also differ from the parameters calculated for the de-
signed shape. Knowledge of these disturbed parameters is
necessary for calculations of the beam breakup caused by
HOMs.

INTRODUCTION

If the accelerating cavity has more than one cell, the cells
need to be tuned relative to each other so that the acceler-
ating field is the same in each cell [1]. Each cell is tuned
by squeezing or stretching it in a special device. The place
of the contact between this device and the cell is different
for squeezing and stretching, so the deformations can occur
in the different places along the cell. These tuning defor-
mations are of necessity plastic, contrary to elastic defor-
mations used for cavities in the cryomodule when a fine
tuning is needed. Deformations discussed in [2] were cal-
culated for the elastic case. A more general approach with
the plastic deformations is needed.

A multicell cavity for high β values has different inner
and end cells, Fig. 1. The inner cell is usualy symmetric
relative to the left and right side, so each halfcell can be
described by 7 parameters related to the inner surface that
define the RF properties of the cell: equatorial radius Req ,
radius of aperture Ra, length L, half-axis of the equatorial
and iris elliptic arcs: A, B, a, and b, respectively, Fig.2.
There is a straight segment l between the arcs, the wall
slope angle α is usually chosen > 90◦ for easier drainage
of chemical liquids at the preparation of the surface.
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First of all, we will analyze deformations of the inner cell
on the example of the Cornell ERL accelerating cavity with
inner dimensions presented in Fig. 2. Wall thickness can
be different in different points of a cell due to the procedure
of stamping from a flat sheet niobium. For simplicity we
will take a uniform thickness of 3 mm. Actual thickness
varies from approximately 2.8, at the iris, to 3.2 mm, at the
equator [3].

Then we will discuss the mechanical properties of the
cavity with stiffening rings and of the end group that con-
sists of the cell and a beam pipe.

Figure 1: Multicell elliptic cavity.

The problem of HOMs parameters scatter due to the de-
viations of the shape from the design was discussed in [4].
Initially, random deviations of the elliptic half-axes were
introduced, then tuning by changing the length of the cell
was done. It was supposed that the half-axes and radii of
the equator and aperture do not change in the process of
this tuning.

Figure 2: Parameters of the inner halfcell and dimensions
of the inner halfcell of the Cornell ERL main linac. Dimen-
sions, in mm, are given for the production drawings, before
etching, at room temperature.

As can be found from the data published in [2], the
fundamental frequency change in the case of elastic de-
formation is df/dL = 5.9 MHz/mm, whereas the above
mentioned simplified model from [4] gives df/dL = 3.9
MHz/mm. This means that the parameters of HOMs will
also change differently in the process of elastic tuning than
in the simplified model. We can be sure that the plastic de-



formations will also be quite different from the elastic ones,
moreover from the simplified model.

We will suggest, like in [2] and [4], that the deformed
cavity is still the elliptic cavity, i.e. can be described by
two elliptic arcs connected with a straight segment tangent
to the arcs at the points of connection. However, we will
evaluate the deviation from the elliptic model because for
large deformations this model can become unsatisfactory.

The design of the tuning device for plastic deformations
can have a decisive effect on the values of deformation.
The plates which contact the cell walls are different for the
cavities with and without stiffening rings.

Calculations were performed with the ANSYS structural
mechanics software [5].

MECHANICAL PROPERTIES OF
NIOBIUM

Summary of mechanical properties of niobium was com-
piled in [6]. The data presented here from various sources
are sometimes contradicting and depend on many different
conditions: RRR, heat treatment – temperature and dura-
tion of annealing, grain size, mechanical processing. The
electron welded iris area can also have different mechani-
cal properties compared to the rest part of the cavity cell.
These details can be taken into account in future research.
To the best of our knowledge this research is the first on
simulating the process of tuning the acceleration cavity, so
we will chose a definite set of properties to find the most
general features of the cell behaviour in the process of plas-
tic deformation.

For our simulations we used the model with the bilin-
ear isotropic hardening and the following parameters of the
material were taken: Yield Strength = 5 · 107 Pa, Tangent
Modulus = 2 ·109 Pa, Young Modulus = 5 ·1010 Pa, Fig. 3.

Figure 3: Reactor grade niobium with RRR = 70; 1200 C
6 hour with RRR = 120; 1250 C 6 hour with RRR = 210;
crystal grain size unknown [6]. The bold red line is the
approximation for our simulations.

Figure 4: Deformation of the dumbbell stretched by a force
of 7 kN.

Figure 5: Elasto-plastic behavior of the halfcell with a free
end at the iris (1) and as part of a dumbbell for maximal
stretching force from 5 to 8 kN (2 – 5).

STRETCHING AN INNER CELL
WITHOUT STIFFENING RINGS

For the simplest case of stretching a cell without stiffen-
ing rings we have to take a dumbbell – two halfcells having
a common iris. The model used for calculations is shown in
Fig. 4. Because of axial symmetry one quarter only of the
whole dumbbell was considered in most cases. The dumb-
bell is fixed at the plane passing through its equator on the
left side but can move in the radial direction. The force is
applied uniformly and parallel to the axis of rotation to the
cross-section passing through the right equatorial plane. If
the model consists of a halfcell only (left half of the model
in Fig. 4) and the force is applied to the iris cross-section,
the iris has no constrains in the radial direction, and the iris
part of the halfcell starts to bend out of the axis of rota-
tion leading to results very different from the results with a
dumbbell model.

In Fig. 5, the values of the halfcell elongation are shown



for different maximal forces applied to the halfcell or to the
dumbbell. Deformations of different parts of the dumbbell
are shown in Fig. 4, and the residual stresses are presented
in Fig. 6.

Figure 6: Residual stress of the dumbbell stretched by a
force of 7 kN.

Figure 7: Residual deformation of the unstiffened halfcell
vs applied stretching force.

One can see that the deformation occurs mainly in the
iris region, the equatorial region is practically not deformed
and has no residual stress. This is also seen in Fig. 7 where
the increments of the geometric parameters of the halfcells
are presented after application of different maximal forces.
These dependences on force are very strong starting from
some point, but if we plot these increments for different
increments of the halfcell length ∆L, we can see that they
are practically linear, Fig. 8. On the same Fig. 8 the values
of the rms deviation σ from the elliptic shape are presented.
One can see that σ is more than 3 orders of magnitude less
than any parameters: Req ,A,B, and so on, so the deformed
halfcell can be considered as an elliptic one. It is difficult
to explain physically the increase of Req by stretching the
cell. It is however seen that this increase of Req is less

Figure 8: Residual deformation of the unstiffened halfcell
vs elongation.

Figure 9: Deviation from the elliptic shape for the halfcell
after application of 8 kN stretching force. Red line is for
the equatorial elliptic arc, blue - for the straight segment,
magenta - for the iris arc.

than the value of σ. This means that actually Req can not
increase by stretching the cell but this apparent increase is
due to rms fitting of the equatorial elliptic arc, see also Fig.
9. Let’s note that the increment ∆b in Fig. 8 is decreased
10 times to make the graph more compact. The bisector
∆L vs ∆L is also shown to highlight that the elongation
of the halfcell happens mainly due to the increase of the
half-axis a.

Deviation from the “ideal” elliptic cavity shape, consist-
ing of 2 elliptic arcs connected with a straight segment, is
shown in Fig. 9 for the stretching force of 8 kN. One can
see that the maximal deformation occurs near the transion
from the equatorial arc to the straight segment.

The change of the working frequency of the halfcell also



Table 1: Coefficients of proportionality for the dimensions and frequency changes with elongation and compression of the halfcell as
a part of the dumbbell and as a part of the end group.

∆A/∆L ∆B/∆L ∆Req/∆L ∆a/∆L ∆b/∆L ∆Ra/∆L ∆f/∆L

Unstiffened Elongation -0.0372 0.108 0.0109 1.057 3.202 0.349 4.15 MHz/mm

dumbbell Compression* 2.11 3.80 -0.432 -0.434 -1.650 0.0474 6.62 MHz/mm

Stiffened Elongation 1.662 nonlinear -0.603 0.250 nonlinear -0.024 6.18 MHz/mm

dumbbell Compression* 0.564 -4.69 -1.307 -0.0190 -0.0671 0.0319 7.19 MHz/mm

Unstiffened Elongation 0.0119 0.463 0.0126 3.205 18.8 0.189 4.49 MHz/mm

end group Compression*

Stiffened Elongation 1.505 nonlinear -0.593 0.1260 nonlinear 0.0289 7.26 MHz/mm

end group Compression*

*For compression ∆L is negative.

Figure 10: Shift of the working frequency of the unstiff-
ened halfcell vs elongation and compression. Points are
simulated by ANSYS, the thin black line is a linear ap-
proximation.

appears linear with ∆L, as is shown in Fig. 10. Points
are the calculated frequencies for the found deformations,
the line is the linear approximation. The coefficients of
proportionality for the dimensions and frequency changes
for elongation are presented in Table 1. The value of
∆f/∆L = 4.15 MHz/mm is comparable with the val-
ues mentioned in the Introduction but relations between the
increments of geometrical parameters defining the halfcell
differ from both the simplified model [4] and from the data
for elastic deformations presented in [2].

The frequency change is defined for the individual half-
cell limited by the electric wall in the equatorial plane and
by the magnetic wall in the iris plane. The measured fre-
quency shift when the halfcell is incorporated into the mul-
ticell cavity will be of course different from this value. The
actual influence on the multicell cavity frequency can be
calculated with SLANS or another specialized software.

Figure 11: Dumbbell with the tuner die.

In reality, for stretching the special dies are used as will
be described in the next section. So, not only the stretched
cell is deformed but the adjacent cells on both external sides
of the die also. More detailed calculations are needed to
analyze deformation of these cells.

COMPRESSING AN INNER CELL
WITHOUT STIFFENING RINGS

For compressing the cell with the goal of decreasing its
frequency, the cell was squeezed between two special dies.
Because of symmetry only one die and one half of the com-
pessed cell was used in the simulation as it is shown in Fig.
11. The die moves parallel to the cavity axis to the left, the
left halfcell is fixed in the equatorial plane but can expand
or shrink radially in this plane. To secure the rigidity of the
iris area, the model includes the whole dumbbell as in the
above section.

As can be seen in Fig. 12, the force needed for the same



deformation as in the case of stretching is about 4 times
larger. This is because now the equator area having larger
cross-section is deformed rather than the iris area.

Figure 12: Elasto-plastic behavior of the halfcell as part of
a dumbbell for maximal compressing force 24, 30, and 34
kN (1, 2, 3).

Figure 13: Residual deformation of the unstiffened halfcell
vs compression.

The increments of the geometric parameters of the half-
cell under compression are shown in Fig. 13. Coefficients
of proportionality for linear approximations versus halfcell
length increment ∆L are in the Table 1.

Deviations from the elliptic halfcell shape after applica-
tion of 34 kN compressing force is shown in Fig. 14. Now
deformation of the equatorial arc is comparable with the
deformation of the transition between the straight segment
and the arcs, cf. Fig. 9.

Frequency change under compression is shown together
with the change under stretching, in Fig. 9. Let us note
that though for stretching the frequency change is practi-
cally linear, there is a smooth transition to a steeper slope
of the curve for compression. The linear approximation

Figure 14: Deviation from the elliptic shape for the halfcell
after application of 34 kN compressing force.

Figure 15: The model for simulation of the stiffened dumb-
bell.

with ∆f/∆L = 6.62 MHz/mm (see the Table 1) is not very
accurate near ∆L = 0.

From the data presented in Table 1 we can conclude that
frequency increase under stretching is due mainly to the in-
crease of the distance between the consecutive irises and
increase of Ra. Both changes decrease the capacitive part
of the resonator. The value of Req keeps practically con-
stant. Under compression, both the gap decrease and the
Req increase (increase of the capacitive and inductive com-
ponents) are responsible for the decrease of the frequency.
This observations give more detail to the results presented
in [7] where the frequency decrease was related to the in-
crease of the equatorial radius.

As it was mentioned in the previous section, the adjacent
cells can be also deformed when a cell is sqeezed between
two dies, mainly in the iris area. This is also a subject of
further research.

STRETCHING AN INNER CELL WITH
STIFFENING RINGS

The model for simulation of the dumbbell with a stiffen-
ing ring is shown in Fig. 15.



Figure 16: Residual deformation of the stiffened halfcell vs
applied stretching force.

Figure 17: Residual deformation of the stiffened halfcell vs
elongation.

Simulation results of stretching of the stiffened halfcell
are presented in Figs. 16, 17 and in Table 1. One can see
that dependences of ∆B and ∆b on ∆L are not linear any-
more but are close to linear for other increments.

COMPRESSING AN INNER CELL WITH
STIFFENING RINGS

Residual deformation of the stiffened dumbbell after
compressing by 40 kN is shown in Fig. 18. Coefficients
for linearization of increments versus change of the halfcell
length are presented in the Table 1. Graphs for increments
of the geometric parameters versus applied compressing
force are shown in Fig. 19. A distinctive feature of this
graph is a lengthening (not shortening under compressing
force) of the halfcell when the force is below 30 kN. The
cause of this behavior is not fully understood, possibly this
is because the contact between the die and the cell is point-
like at the first moment when the force is small, possibly
the mesh is too large (1 mm). Anyway, this anomalous be-

Figure 18: Residual deformation of the stiffened inner half-
cell after compressing by 40 kN.

Figure 19: Residual deformation of the stiffened inner half-
cell vs applied compressing force.

havior happens at the level less than 10 micrometers, and
if the level of tuning is of the order of 100 kHz, the depen-
dencies of the geometrical increments and ∆f on ∆L are
quite linear, see Figures 20 and 21.

STRETCHING OF THE UNSTIFFENED
END GROUP

Results of stretching simulations of the unstiffened end
group are shown in Figs. 22 - 26 and in the Table 1. In
Fig. 26 ∆a and ∆b seem nonlinear with ∆L. This can be
an effect of the short arc when the curvature is the same for
two different arcs, radius of curvature rc = a2/b = const.
A small deviation of the external points of the dumbbell
surface can cause a big deviation in a and b but simultane-
ously. The curvature keeps for a given elongation if these



Figure 20: Residual deformation of the stiffened inner half-
cell vs change of halfcell length.

Figure 21: Shift of the working frequency of the stiffened
inner halfcell vs elongation and compression.

errors in a and b are small. It varies linearly with the half-
cell elongation, see the lower line in Fig 26.

Dependence of the halfcell frequency on the elongation
is shown in Fig. 27. The linear dependence of frequency on
the elongation is not kept for high values of ∆L. However,

Figure 22: Residual deformation of the unstiffened end
group after stretching by 15 kN.

Figure 23: Residual stress of the unstiffened end group af-
ter stretching by 15 kN.

Figure 24: Elasto-plastic behavior of the unstiffened end
group for maximal stretching force from 8 to 15 kN.

we do not expect the deformations as big as more than 2
mm with frequency change about 10 MHz. So, the coeffi-
cient ∆f/∆L = 4.49 MHz/mm in the Table 1 is calculated
for this initial part of the plot. Here, as it was done above
for the dumbbell, we define the frequency of the halfcell
when it is limited with the electric boundary in the equato-
rial plane and with the magnetic boundary in the iris plane.

COMPRESSING OF THE UNSTIFFENED
END GROUP

This work was not finished because of lack of financing.

STRETCHING OF THE STIFFENED END
GROUP

Residual deformation of the stiffened end group after
stretching by 30 kN are shown in Fig. 28. Elasto-plastic



Figure 25: Residual deformation of the unstiffened end
group halfcell vs applied stretching force.

Figure 26: Residual deformation of the unstiffened end
group halfcell vs elongation.

behavior of the stiffened end group for maximal stretching
force from 10 to 30 kN is presented in Fig. 29. One can
see that no residual deformation occurs at 10 kN and up to
approximately 14 kN.

COMPRESSING OF THE STIFFENED
END GROUP

This work was not finished because of lack of financing.

CONCLUSION
Tuning of a multicell superconducting cavity with the

goal to compensate errors of manufacturing and to obtain
necessary field flatness between the cells is used in any lab-
oratory working with these cavities as a part of the cavity
preparation. The present work, to the best of our knowl-
edge, is the first attempt to connect forces for this tuning
with changes of dimensions and frequency, to find limits
of elastic and plastic deformations. Simulations were done
with the ANSYS software. Properties of niobium used for
the simulations were chosen from a variety of data, actu-
ally they are different depending on the preparation of the

Figure 27: Frequency shift of the halfcell in the unstiffened
end group vs elongation. Calculated points and a linear
approximation.

Figure 28: Residual deformation of the stiffened end group
after stretching by 30 kN.

material, but we hope that the main dependences will be
qualitatively the same for any quality of the metal. Us-
age of stiffening rings needed for limitation of the Lorentz
forces when a cavity works with strong fields, changes sig-
nificantly its mechanical properties. These simulations are
done for the inner cells but were not finished for the end
group.

It is shown that the shape of the cavity cell, inspite of
its deformations, can be treated with a good accuracy as
an elliptic shape. In this case, it is easy to calculate fre-
quency change versus the cell elongation or shortening, us-
ing a special software, e. g. SLANS [8]. The correct ac-
count of the shape change gives a way for calculation of
higher order modes. It is shown that a simplified approach
to the deformations used earlier leads to unreliable results.
It is found that the change of the geometrical parameters
of the cavity cell, half-axes of the elliptic arcs, equatorial



Figure 29: Elasto-plastic behavior of the stiffened end
group for maximal stretching force from 10 to 30 kN.

Figure 30: Residual deformation of the stiffened end group
halfcell vs applied stretching force.

and aperture radii, its working frequency, are in most cases
linear function of the increment of the cavity length.
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