X-Ray Photon Correlation Spectroscopy Using an Energy Recovery Linac Source

Steve Dierker Department of Physics University of Michigan

Coherent X-Ray Scattering from Disordered Sample Produces "Speckle"

 Random constructive + destructive interference by sample domains results in a "speckle pattern"

- Speckle pattern depends on exact arrangement of domains, not just domain size distribution
- If incident x-rays are not coherent, resolution is insufficient to observe speckle pattern
- XPCS measures slow dynamics (10⁻⁵ 10² sec) at large wave-vectors

Accessible Ranges of Frequency and Wavevector for Various Techniques

Scientific Problems which could be addressed by XPCS with a sufficiently brilliant source

- **Simple Liquids** Transition from the hydrodynamic to the kinetic regime
- *Complex Liquids* Effect of the local structore on the collective dynamics
- **Polymers** Entanglement and reptative dynamics
- *Glass Formers* Relaxational modes in the mesoscopic space-time region
- *Dynamic Critical Phenomena* Order fluctuations in alloys, liquid crystals, polymer mixtures, etc.
- Charge Density Waves Direct observation of sliding dynamics
- Quasicrystals Nature of phason and phonon dynamics
- **Surfaces** Dynamics of adatoms, island, and steps during growth and etching.
- Defects in Crystals Diffusion, dislocation glide, domain dynamics
- **Ferroelectrics** Order-disorder vs. displacive nature; anisotropic correlations and size effects
- *Magnetism* Random field systems, magnetic stripe domain dynamics

Examples of Current Experiments

Gold/Pd/Sb₂O₅/Latex Colloids

Pd Colloids in Glycerol (Thurn-Albrecht, et. al., 1996)

• PS-PI Block Copolymer Micelles in PS (Mochrie, et. al., 1997)

• Hexane/Nitrobenzene binary fluids (Dufresne, et. al., 2000)

- Anti-phase domains in metal alloys
- Phase separation in sodium borosilicate glasses
- PS/PB homopolymer mixtures

Impact of an ERL Source

Current range of relaxation times: $\sim 10^{-4}$ to 10^2 seconds. Many exps use area detection for increased collection efficiency. Most of these exps are limited by current $3^{\rm rd}$ generation sources.

 Need increased coherent flux to probe faster times higher q's more weakly scattering samples

Coherent Flux ~ Br x λ^2 x $(\Delta \lambda/\lambda)$

• Need increased brilliance

At small q, speckle contrast $\sim \frac{\text{coherence volume}}{\text{scattering volume}}$

At high q, contrast decreases as path lengths increase

• Need full transverse and increased longitudinal coherence

Source	$\Delta \lambda / \lambda$	Coh. Flux	q_{max}
APS (Pink beam)	$2x10^{-2}$	$\sim 10^{12} \text{ ph/s}$	$\sim 0.02 A^{-1}$
APS (Ge mono)	$3x10^{-4}$	$\sim 10^{10} \text{ph/s}$	$\sim 2.00 A^{-1}$
ERL (Pink beam)	$1x10^{-3}$	$\sim 10^{14} \text{ph/s}$	$\sim 0.20 A^{-1}$

Experiments we could do with more brilliance!

• Cross-over from Reptation to Rouse Dynamics at large q

• Fluctuations in Magnetic Systems; Random Field, Stripes, etc.

Experiments we could do with more brilliance!

Surfactants in Binary and Ternary Systems

Related Structures in Block Copolymers

Possible morphologies of triblock copolymers, Bates & Fredrickson, Physics Today, 1999

