Frontiers of X-ray Microdiffraction

Gene Ice, Bennett Larson, Jin-Seok Chung, Wenge Yang, Jon Tischler, John Budai, Fred Walker *Oak Ridge National Laboratory*

ORNL has demonstrated a new class of microdiffraction instrumentation based on polychromatic x-ray beams

Solves intrinsic problem with conventional microdiffraction-

-Sample does not need to be rotated!

Special software required- Can index polycrystalline samples

3D nondestructive probe of stress/strain/crystal structure!

Polycrystalline microdiffraction station has four key elements

Current 3-D resolution: $<0.4 \times 0.5 \times 0.7 \mu m^3$ Current strain tensor resolution: $\sim 10^{-4}-10^{-5}$

Technical challenges addressed to make microscope practical

• R&D 100 award winning mirrors

- Unique micro-monochromator
 - Ultra-stable/nondispersive
 - Full strain tensor
- ORNL aquistion/analysis software-
- Differential triangulation microscopy

Optimization complex and can depend on particular experiment

- In 2θ=90° geometry signal ∝ E⁻⁷
- Number of reflections ∝ E³
- Absorption length ∝ E³
- Thermal load ∝ E⁻²
- Diffraction limit ∝ E⁻¹

Nondestructive in-situ characterization of materials properties.

- Penetrating 3-D
- Grain orientation/ morphology
- Grain phase
- Gain strain
- Plastic deformation

Current performance is limited by geometrical demagnification/ mirror perfection/windows

- Diffraction limit ~50 nm
 - 20 keV x-rays
 - 1-2 mrad convergence
- Geometrical demagnification ~500 nm
- Mirror figure errors ~ 250 nm
 - Emerging technologies for superior figure/roughness

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Diffraction limit

Differential deposition profile transforms cylindrical to elliptical

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY **Beam profile**

Thermal loading will become important with ERL and advanced optics

- Surprisingly benign focused white beams
 - Linear with power
 - Weakly with focal spot size
- Simple extension of current techniques impractical less efficient approaches offer new opportunities!

 $\Delta T \sim (P_T)(\mu/k) [1/2 + lnR_2/R_1)/2\pi$

High performance of ERL will extend technique

- Energy scan mode
 - Much better signal-to-noise
 - Complete reciprocal space
- Diffraction limited focus
 - ~50 nm radius will reduce thermal load by 100
- High energy
 - Deep 3-D measurements

sample

High performance of ERL will open up new regimes

- Better spatial resolution
 - Nanoscale materials
 - Fracture (local environment)
 - Nucleation and growth
 - Fine grain mosaic materials
- Better signal-to-noise
 - Fluorescing materials
 - Highly deformed/mosaic materials
- High Energy
 - 3D in high Z materials

Number of reflections detected can be controlled

- Increase detector solid angle ~1 steradian
- 1 mrad \rightarrow 1/3 reflection
- 10% bandpass @ 20 keV→4-5

 8° rotation = 10% bandpass <u>but blurs</u> resolution for 4µm thick sample.

Large horizontal beam size can be mitigated with intermediate aperture

Ideal operating energy/conditions is a compromise

- High energy
 →many reflections
- Low energy→better reflectivity
- High E →lower thermal load
- High E →deeper penetration

