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Critical Needs in Characterizing Organic Devices 

In reply to Sol: What I would reallylike to do!
Janos’ demand: We need to solve problems!

XDL workshop, 
Cornell, June 7, 2011

Harald Ade
Department of Physics

North Carolina State University
http://www.physics.ncsu.edu/stxm/

Thanks to organizers for inviting me
Research supported by: DOE Office of Science, Basic Energy Science, Division of Materials Science and 

Engineering, National Science Foundation
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Beamlines we use are: 5.3.2.2 (STXM), 6,3.2 (SoXR), 7.3.3. (WAXS), 11.0.1.2 (SoXS), 11.0.2.1 (STXM)

2

Brian at 5.3.2.2 STXM
Cheng and Hongping  
at11.0.1.2. (R-SoXS)

11.0.2.1 STXM

Hongping at 7.3.3. 
(SAXS/WAXS)

My energy range might 
be below the Cornell 
ERL target range
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Organic Electronics: 
An interesting area of applications and characterization needs

Context: Energy Security/Independence, Global Warming

organic photovoltaics 
(OPV)

(from Nicole Cappello, 
Gatech)

Flexible organic 
light emitting 
diodes (OLED)

(from Sony)

organic thin film transistors, 

(from www. livescience.com.) 
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Critical Factors in Organic Photovoltaic Devices:
Morphology, interfaces, domain purity, and energy levels

“Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies”, Wiley-VCH (August 25, 2008)

Bulk heterojunction devices
Need lateral structure ~10 nm in size

Light

What makes fullerene-based devices to successful?
What are the primary shortcomings of polymer-polymer devices and can they be overcome?

What role can soft x-ray characterization methods play?
• Morphology (including crystallinity): scattering and microscopy
• Interfaces: scattering and reflectivity
• Purity: quantitative compositional microscopy and scattering

PCBM
P3HT
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 Three phases inferred in P3HT:PCBM
 Pure P3HT crystals
 “Pure” PCBM agglomerates
 Amorphous phase w/ 15-20 wt.% PCBM

 No Pure amorphous phases 
exist in devices
 Two-phase model based on 

pure components incorrect
 Volume breakdown of the phases: ~1/3 is mixed 

amorphous phase

Actual Device Morphology:
Not two but at least three phases!

Reflecting Cathode

Transparent Anode

Absorbing Layer

Reflecting Cathode

Transparent Anode

Absorbing Layer

P3HT PCBM

Xtal XtalAmorphousNew View

Old View
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There is a lack of excellent tools to characterize 
OPV device morphology 

 Need quantitative  mapping

 Better than analytical TEM

 ~10 nm spatial resolution

 3D 
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Even present tools are very powerful

B. Collins et al. J. Phys Chem Lett 1, 3160 (2010)
 X-ray microscopy shows PCBM is partially miscible with 

P3HT (~15% PCBM in amorphous portion of P3HT
 Three, not two domains in BHJ devices of this important 

system

H. Yang, et al. Adv Funct Mater. 20, 4209 (2010)
 X-ray reflectivity coupled to device data and MC simulations 

shows that  interface structure in PFB/F8BT bilayers 
contributes 50% to the poor performance. 

 Non-equilibrium, sharp interfaces are best

S. Swaraj et al., Nano Letters 10, 6863 (2010)
 Scattering and microscopy shows that domains in all-

polymer blends are too large or too impure
Need better control. Use of BCP? 
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Characterization power 
based on Soft X-rays’ 

unique interaction with 
organic materials 

Scattering factors
and optical constants of 

C,N, and O
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1 g/cm3

Assumed 
density of 
1 g/cm3

“Natural” scattering contrast:
242 |)()(|)()( EiEEEFEI  

Quantitative absorption microscopy:
• Beer’s Law: I=I0e-μρt
 20-200 nm thick samples

Complex index of refraction: 
n=1-δ+iβ
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Resonant Scattering/Reflectivity
R-SoXS/R-SoXR

(contrast is almost as good as selective deuteration)
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Scattering factors f’ and f” (optical const. δ and 
β, respectively) show strong energy dependence

“Bond specific” scattering!
Substantial potential as complementary tool!

NP2VP
PS PMMA

R or I   (Δδ2+Δβ2)

Absorption (NEXAFS)

Dispersion

270 280 290 300 310 320

 1x10-6

 2x10-6

 3x10-6

 4x10-6

 5x10-6

 Energy (eV)

 PS-PMMA Interface
 PS-Vacuum Interface

(c)

R
ef

le
ct

iv
ity

 

 

 in 1

22
2

2211

22112
1212 sinsin

sinsin 








nn
nnrR

Neutron community use different terminology: complex scattering length density
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Resonant Soft X-ray Scattering (R-SoXS) of PFB:F8BT blend
High enough scattering contrast for transmission experiment

Channeltron

X-rays

Sample




Transmission geometry

S. Swaraj,C. Wang, H Yan, B Watts,J. Lüning, C. R. McNeill, and H. Ade, Nano Letters 10, 6863 (2010)
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Are donor and/or acceptor domains pure in OPV 
devices? 

Ma W., Gopinathan A., & Heeger A., 
Adv. Mater. 19, 3556 (2007).

Binarized phase contrast TEM of P3HT:PCBM BHJ

Are there just 
two phases?
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Thermodynamics of blends used in organic solar cells
P3HT:PCBM 1:1 w/w

• Quantitative mapping
• Diffusion constant ~ 2.5 × 10−14 m2/s. 
• The PCBM concentration at the crystal boundary was found to be ~19% (v/v) 

Watts, B., Belcher, W. J., Thomsen, L. et al.,  Macromol. 42,. 8392 (2009)

PCBM

P3HT
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Miscibility in P3HT:PCBM from NEXAFS microscopy
1:1 blends annealed 48 hrs, large PCBM crystals next to 

“equilibrium” matrix
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All grades of P3HT are partially miscible

B. Collins et al. J. Phys Chem Lett 1, 3160 (2010)

Absolute accuracy <1%
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MDMO-PPV:PCBM blends

 9% miscibility

B. Collins et al. J. Phys Chem Lett 1, 3160 (2010)

 Domains seem to be always impure  implications for device physics?
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Miscibility seems 
to be a general 

phenomena

This has not been 
contemplated until recently
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 Three phases inferred in P3HT:PCBM
 Pure P3HT crystals
 “Pure” PCBM agglomerates
 Amorphous phase w/ 15-20 wt.% PCBM

 No Pure amorphous phases 
exist in devices
 Two-phase model base on 

pure components incorrect
 Volume breakdown of the phases: ~1/3 is mixed 

amorphous phase

Actual Device Morphology:
Not two but at least three phases!

Reflecting Cathode

Transparent Anode

Absorbing Layer

Reflecting Cathode

Transparent Anode

Absorbing Layer

P3HT PCBM

Xtal XtalAmorphous
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Morphology

Polymer:Polymer blend devices
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Domain size analysis with R-SoXS
1:1 PFB:F8BT blends cast from chloroform
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Small 
domains get 
more pure

Small domains disappear at 200 ºC

~7 nm feature
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Average domain much larger than exciton diffusion 
length and/or too impure
 poor efficiency (partially) explained

Sample As 
spun

140 
oC

160 
oC

180 
oC

200 
oC

Domain 
size /nm

RSoXS ~77 ~71 ~89 ~110 ~260

STXM ~80 ~80 ~85 ~100 ~250

S. Swaraj,C. Wang, H Yan, B Watts,J. Lüning, C. R. McNeill, and H. Ade, Nano Letters 10, 6863 (2010)
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Another all-polymer blend: P3HT:N2200
Initial data/analysis

 Domains way too large from the beginning
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Third all-polymer blend: P3HT:F8TBT
Initial data/analysis

 Unfavorable large range of domain size once annealed

PCE=1.8% at 140  °C
McNeill APL 90, 193506 (2007)
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Characterization needs

 10 nm 3D spatial resolution
 Quantitative compositional analysis that exceeds analytical TEM capabilities
 Artifact free
 Engineering applications
 Rapid analysis
 Many samples with different processing conditions
 Preliminary analysis online

 Avoid radiation damage for high resolution data
 phase contrast

 ptychography
 Just below the arbon absorption edge
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How about we test ptychography at C-edge with a good test samples?

Cheng Wang1,†,*, Dong Hyun Lee2,†, Alexander Hexemer1, Myung Im Kim3, Wei Zhao4, Hirokazu Hasegawa5, Ting Xu3, 
Harald Ade6, Thomas P. Russell4,* (in preparation)
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How about we test ptychography at C-
edge with triblock copolymer test 

samples?
Good mix of complexity and sample knowledge

(a) (b)

(a)

(c)

Cheng Wang1,†,*, Dong Hyun Lee2,†, Alexander Hexemer1, Myung 
Im Kim3, Wei Zhao4, Hirokazu Hasegawa5, Ting Xu3, Harald Ade6, 
Thomas P. Russell4,* (in preparation)

50 nm

osmium tetraoxide 

di-iodobutane and osmium tetraoxide

osmium tetraoxide   PI domains
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Polarization in STXM and Scattering

Another interesting and unique contrast mechanism

 probing domain size and domain correlation in TFT applications
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 Specific molecular orbitals are probed via x-ray photons at resonant energies
 Absorption/Scattering enhanced if photon polarization is parallel to orbital 

dipole moment

Polarization contrast in STXM and Scattering

Collins et al. (2011).
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Scattering can 
assess average 

domain size
First results from 

polarization scattering 
of pentacene

 Use scattering when 
domains are too small 
for STXM

500nm500nm

293eV
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Scattering Results from PBTTT/PMMA TFTs: 
I(q)·q2

 Non-Resonant scattering sensitive to mass-thickness
 Similar to scattering using hard x-rays

 Resonant  scattering profiles completely different,
showing definite trend
 Clear trend of both feature size and feature contrast

max~150nm
480nm

600nm780nm

Domain correlationsThickness/roughness

Non-Resonant Resonant

Feature Size ~ Position of Max

As-cast

Annealed

Collins et al. (2011).
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Device mobility related to domain size

 correlation of feature size with device saturation mobilities
 Corr. Coef = 0.992
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Collins et al. (2011).
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~150 nm thick, annealed at 180C

P-SoXS signal from 
P3HT:F8TBT blends

Not sure yet what this all means,

 Better real space method 
would be really helpful 

STXM image at 285.4 eV
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Lipid Rafts
ISI search: 6370 hits

1. Non-raft membrane
2. Lipid raft
3. Lipid raft associated transmembrane protein
4. Non-raft membrane protein
5. Glycosylation modifications (on glycoproteins and glycolipids)
6. GPI-anchored protein
7. Cholesterol
8. Glycolipid 

cellbiology.med.unsw.edu.au/.../lecture0803.htm

•Cell plasma membrane 
patchy and locally 
differentiated into domains 
•some domains seem to arise 
through the confinement of 
diffusible membrane proteins 
•other domains may arise 
through lipid-lipid interactions 
•Domains are transient on 
a biological timescale
•both could create local 
conditions that enhance 
molecular interactions (e.g. 
receptor-mediated signaling) 
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Lipid Rafts
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RAFTS are a 4+ “Dimensional” problem

 2 if not 3 space dimensions
 Fluctuations over a large time range
 FLASH diffraction imaging would require statistical analysis 

of many images and interpretation using models. Might not 
be able to capture fluctuations dynamics. 

 Need to isolate specific chemical components
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XPCS of lipid rafts

 ERL with high rep rate offers opportunity to investigate rafts with high 
time resolution

Needs:
 Adjustability near carbon K-edge
 Resolving power of ~2000
 Coherent, high intensity beam
 Rafts are weak scatters

 Unknown time scale of fluctuations requires large t-domain
 Unsure about need for polarization
 Sample geometry and preperation needs to be sorted out
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Utility of Soft X-rays

 Lots of great science possible (It’s also fun!)
 How low in energy will the Cornell ERL go? 
 Reaching Oxygen would be useful
 Carbon would be clearly best



XDLade_2011.ppt

NC STATE University

34

Thank you for your attention

Thanks to members of my group:
B. Collins, S. Swaraj (now Soleil), 

H. Yan, E. Gann, Z. Gu, J. Seok

and 

C. McNeill, N. Greenham, I. Hwang 
(Cambridge), C. Wang (ALS), M. Chabinyc, and 

J. Cochran (UCSB)

Cheng and Hongping at the ALS

Financial support: 
DOE Office of Science, Basic Energy Science,
Division of Materials Science and Engineering

Contract: DE-FG02-98ER45737


