Critical Needs in Characterizing Organic Devices

In reply to Sol: What I would reallylike to do! Janos' demand: We need to solve problems!

XDL workshop, Cornell, June 7, 2011

Harald Ade Department of Physics North Carolina State University http://www.physics.ncsu.edu/stxm/

Thanks to organizers for inviting me Research supported by: DOE Office of Science, Basic Energy Science, Division of Materials Science and Engineering, National Science Foundation

NC STATE University

Beamlines we use are: 5.3.2.2 (STXM), 6,3.2 (SoXR), 7.3.3. (WAXS), 11.0.1.2 (SoXS), 11.0.2.1 (STXM)

XDLade_2011.ppt ²

Organic Electronics:

An interesting area of applications and characterization needs

Context: Energy Security/Independence, Global Warming

organic photovoltaics (OPV)

(from Nicole Cappello, Gatech)

Flexible organic light emitting diodes (OLED)

(from Sony)

organic thin film transistors,

(from www. livescience.com.)

Critical Factors in Organic Photovoltaic Devices: Morphology, interfaces, domain purity, and energy levels

"Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies", Wiley-VCH (August 25, 2008)

What makes fullerene-based devices to successful?

What are the primary shortcomings of polymer-polymer devices and can they be overcome?

What role can soft x-ray characterization methods play?

- Morphology (including crystallinity): scattering and microscopy
- Interfaces: scattering and reflectivity
- Purity: quantitative compositional microscopy and scattering

NC STATE University

Actual Device Morphology: Not two but at least three phases!

- Three phases inferred in P3HT:PCBM
 - Pure P3HT crystals
 - "Pure" PCBM agglomerates
 - Amorphous phase w/ 15-20 wt.% PCBM
- No Pure amorphous phases exist in devices
 - Two-phase model based on pure components incorrect
- Volume breakdown of the phases: ~1/3 is mixed amorphous phase

There is a lack of excellent tools to characterize OPV device morphology

- Need quantitative mapping
 - Better than analytical TEM
- ~10 nm spatial resolution
- 3D

Even present tools are very powerful

- B. Collins et al. J. Phys Chem Lett 1, 3160 (2010)
 - X-ray microscopy shows PCBM is partially miscible with P3HT (~15% PCBM in amorphous portion of P3HT
 - → Three, not two domains in BHJ devices of this important system
- H. Yang, et al. Adv Funct Mater. 20, 4209 (2010)
 - X-ray reflectivity coupled to device data and MC simulations shows that interface structure in PFB/F8BT bilayers contributes 50% to the poor performance.
 - \rightarrow Non-equilibrium, sharp interfaces are best
- S. Swaraj et al., Nano Letters 10, 6863 (2010)
 - Scattering and microscopy shows that domains in allpolymer blends are too large or too impure
 - →Need better control. Use of BCP?

NC STATE University

Characterization power based on Soft X-rays' unique interaction with organic materials

Scattering factors and optical constants of C,N, and O

Complex index of refraction: $n=1-\delta+i\beta$

"Natural" scattering contrast:

 $I(E) \propto F^2(E) \propto E^4 |\delta(E) + i\beta(E)|^2$

Quantitative absorption microscopy:

• Beer's Law: $I=I_0e^{-\mu\rho t}$ \rightarrow 20-200 nm thick samples

Resonant Scattering/Reflectivity R-SoXS/R-SoXR

(contrast is almost as good as selective deuteration)

Scattering factors f' and f'' (optical const. δ and β , respectively) show strong energy dependence

$$n = 1 - \delta + i\beta$$

Neutron community use different terminology: complex scattering length density

$$R_{12} = \left|r_{12}\right|^2 = \left|\frac{n_1 \sin \theta_1 - n_2 \sin \theta_2}{n_1 \sin \theta_1 + n_2 \sin \theta_2}\right|^2 \propto \Delta \delta^2 + \Delta \beta^2$$

PS

Substantial potential as complementary tool!

XDLade_2011.ppt

Resonant Soft X-ray Scattering (R-SoXS) of PFB:F8BT blend High enough scattering contrast for transmission experiment

Are donor and/or acceptor domains pure in OPV devices?

Binarized phase contrast TEM of P3HT:PCBM BHJ

Are there just two phases?

Ma W., Gopinathan A., & Heeger A., *Adv. Mater.* **19**, 3556 (2007).

Thermodynamics of blends used in organic solar cells P3HT:PCBM 1:1 w/w

- Quantitative mapping
- Diffusion constant ~ 2.5×10^{-14} m²/s.
- The PCBM concentration at the crystal boundary was found to be ~19% (v/v)

Watts, B., Belcher, W. J., Thomsen, L. et al., Macromol. 42, 8392 (2009)

Miscibility in P3HT:PCBM from NEXAFS microscopy

1:1 blends annealed 48 hrs, large PCBM crystals next to

All grades of P3HT are partially miscible

Miscibility seems to be a general phenomena

This has not been contemplated until recently

 \rightarrow Domains seem to be always impure \rightarrow implications for device physics?

B. Collins et al. J. Phys Chem Lett 1, 3160 (2010)

XDLade_2011.ppt

NC STATE University

Actual Device Morphology: Not two but at least three phases!

- Three phases inferred in P3HT:PCBM
 - Pure P3HT crystals
 - "Pure" PCBM agglomerates
 - Amorphous phase w/ 15-20 wt.% PCBM
- No Pure amorphous phases exist in devices
 - Two-phase model base on pure components incorrect
- Volume breakdown of the phases: ~1/3 is mixed amorphous phase

Morphology

Polymer:Polymer blend devices

Domain size analysis with R-SoXS 1:1 PFB:F8BT blends cast from chloroform

Sample		As spun	140 °C	160 °C	180 °C	200 °C
Domain size /nm	RSoXS	~77	~71	~89	~110	~260
	STXM	~80	~80	~85	~100	~250

Average domain much larger than exciton diffusion length and/or too impure \rightarrow poor efficiency (partially) explained

Another all-polymer blend: P3HT:N2200 Initial data/analysis

ightarrow Domains way too large from the beginning

Third all-polymer blend: P3HT:F8TBT Initial data/analysis

 \rightarrow Unfavorable large range of domain size once annealed

Characterization needs

- 10 nm 3D spatial resolution
- Quantitative compositional analysis that exceeds analytical TEM capabilities
- Artifact free
- Engineering applications
 - Rapid analysis
 - Many samples with different processing conditions
 - Preliminary analysis online
- Avoid radiation damage for high resolution data
 → phase contrast
- → ptychography
- → Just below the arbon absorption edge

How about we test ptychography at C-edge with a good test samples?

Cheng Wang^{1,†,*}, Dong Hyun Lee^{2,†}, Alexander Hexemer¹, Myung Im Kim³, Wei Zhao⁴, Hirokazu Hasegawa⁵, Ting Xu³, Harald Ade⁶, Thomas P. Russell^{4,*} (in preparation)

NC STATE University

How about we test ptychography at Cedge with triblock copolymer test samples? Good mix of complexity and sample knowledge

osmium tetraoxide \rightarrow PI domains

Cheng Wang^{1,†,*}, Dong Hyun Lee^{2,†}, Alexander Hexemer¹, Myung Im Kim³, Wei Zhao⁴, Hirokazu Hasegawa⁵, Ting Xu³, Harald Ade⁶, Thomas P. Russell^{4,*} (in preparation) osmium tetraoxide

di-iodobutane and osmium tetraoxide

50 nm

Polarization in STXM and Scattering

Another interesting and unique contrast mechanism

 \rightarrow probing domain size and domain correlation in TFT applications

Polarization contrast in STXM and Scattering

- Specific molecular orbitals are probed via x-ray photons at resonant energies
- Absorption/Scattering enhanced if photon polarization is *parallel* to orbital dipole moment

Collins et al. (2011).

Scattering can assess average domain size First results from polarization scattering of pentacene

→ Use scattering when domains are too small for STXM

XDLade_2011.ppt

Scattering Results from PBTTT/PMMA TFTs: $I(q) \cdot q^2$

- Non-Resonant scattering sensitive to mass-thickness
 - Similar to scattering using hard x-rays
- Resonant scattering profiles completely different, showing definite trend
 - Clear trend of both feature size and feature contrast

Annealed

XDLade 2011.ppt

Device mobility related to domain size

- correlation of feature size with device saturation mobilities
- Corr. Coef = 0.992

Collins et al. (2011).

P-SoXS signal from P3HT:F8TBT blends

~150 nm thick, annealed at 180C

Not sure yet what this all means,

→ Better real space method would be really helpful

NC STATE University

Lipid Rafts ISI search: 6370 hits

- 1. Non-raft membrane
- 2. Lipid raft
- 3. Lipid raft associated transmembrane protein
- 4. Non-raft membrane protein
- 5. Glycosylation modifications (on glycoproteins and glycolipids)
- 6. GPI-anchored protein
- 7. Cholesterol
- 8. Glycolipid

Cell plasma membrane patchy and locally differentiated into domains
some domains seem to arise through the confinement of diffusible membrane proteins
other domains may arise through lipid-lipid interactions
Domains are transient on a biological timescale
both could create local conditions that enhance molecular interactions (e.g. receptor-mediated signaling)

Lipid Rafts

Biophysical Journal Volume 80 March 2001 1417-1428

Lipid Rafts Reconstituted in Model Membranes

C. Dietrich,* L. A. Bagatolli,[†] Z. N. Volovyk,[‡] N. L. Thompson,[‡] M. Levi,[§] K. Jacobson,^{*,1} and E. Gratton[†]

RAFTS are a 4+ "Dimensional" problem

- 2 if not 3 space dimensions
- Fluctuations over a large time range
 - FLASH diffraction imaging would require statistical analysis of many images and interpretation using models. Might not be able to capture fluctuations dynamics.
- Need to isolate specific chemical components

XPCS of lipid rafts

 ERL with high rep rate offers opportunity to investigate rafts with high time resolution

Needs:

- Adjustability near carbon K-edge
- Resolving power of ~2000
- Coherent, high intensity beam
 - Rafts are weak scatters
- Unknown time scale of fluctuations requires large t-domain
- Unsure about need for polarization
- Sample geometry and preperation needs to be sorted out

Utility of Soft X-rays

- Lots of great science possible (It's also fun!)
- How low in energy will the Cornell ERL go?
 - Reaching Oxygen would be useful
 - Carbon would be clearly best

Thank you for your attention

Thanks to members of my group: B. Collins, S. Swaraj (now Soleil), H. Yan, E. Gann, Z. Gu, J. Seok

and

C. McNeill, N. Greenham, I. Hwang (Cambridge), C. Wang (ALS), M. Chabinyc, and J. Cochran (UCSB)

Financial support: DOE Office of Science, Basic Energy Science, Division of Materials Science and Engineering Contract: DE-FG02-98ER45737

Cheng and Hongping at the ALS