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Outline

•Diffraction limit and coherence

•Coherent imaging and wave propagation

•Coherent diffraction – contrast and scaling law

•Potential high-impact applications

•Summary
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Spatial (Transverse) Coherence
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Coherent Wave Propagation
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 Unified wave propagation 
method by Fourier transform
 Unified iterative phasing 
algorithm development

Xiao & Shen, PRB 72, 033103 (2005)

Phase-embedded object:

• Momentum transfer: (Qx, Qy) = (kX/z, kY/z)
• Number of Fresnel zones: Nz = a2/(z)



5 BROOKHAVEN SCIENCE ASSOCIATES

Different Regimes of X-ray Imaging 
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Kagoshima et al. 
JJAP (1999).

Miao et al. 
Nature (1999).

Jacobsen (2003).
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Coherent X-ray Diffraction Imaging / Microscopy

• Coherent diffraction microscopy is much like 
crystallography but applied to noncrystalline materials

• Requires a highly coherent x-ray beam (available at 
diffraction-limited source) and iterative phase retrieval

2 m

Example: structure of nanoporous gold
Xiao, Shen, Sandy, et al. (APS)

Optical image

Reconstructed image

12 nm

CDI combined with STXM: allows study of 
extended specimens

Thibault, et al, Science (2008)

Courtesy of 
J. Miao 
(UCLA)

APS 8-ID

SLS
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Scaling Laws in Coherent Diffraction Imaging

Shen et al. JSR 11, 432 (2004)
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Q-dependence of Coherently Scattered X-Rays
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Experiment results: 

Gold nanofoam specimen
CDI data to ~ 8 nm

 Scaling law depends on specimen   
heterogeneity length scale !
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Contrast and Resolution Limit in Coherent Diffraction 
Microscopy

• Coherent diffraction imaging has the potential to advance structural science to 
noncrystalline specimens

• In principle, achievable resolution is limited only by x-ray wavelength;  
However, additional factors apply:

• Contrast depends on the length scales at which inhomogeneities exist and is 
momentum-transfer Q dependent, and therefore highest achievable resolution 
may vary from system to system;

• No single universal scaling law can be                                                                     
applied to all systems;

• For radiation sensitive specimens (e.g.                                                                
biological specimens), radiation damage                                                            
limits achievable high resolution.

• In all cases, hard x-ray diffraction limited                                                      
sources will play critical roles in making                                                                 
high-resolution coherent diffraction                                                               
microscopy feasible and practical. 
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• High-resolution Atomic-scale Structures:
• Atomic-resolution structures of amorphous solids
• Few-unit-cell nanocrystals of biomolecules
• 2D crystals of membrane proteins

• High-resolution Nanoscale Structures:
• Subcellular structures in biological cells
• Group of biological cells during development
• Biological bones and tissues  

• Model-free Structures of Order/Disorder:
• Static disorder and dislocations 
• Strain fields
• Charge/orbital/spin ordering

• Speckle imaging: 
• Information beyond spatial resolution of the optic
• Spatially resolved speckle statistical averaging 

Emerging Potential High Impact Science Areas

Shapiro et al. PNAS (2005)

Nature 418, 62 (2002)

Wochner et al. PNAS (2009)
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Amorphous Silicon (-Si):
- atomic resolution structure data still lacking
- one of grand challenges in solid state physics

Coherent Diffraction Imaging of Amorphous Structures

Veit Elser (Cornell)

PRB 58, 4579 (1998)

Nature 418, 62 (2002)

• High-resolution Amorphous Structures: 
Coherent diffraction microscopy could 
become a unique in-situ experimental 
technique to provide direct atomic-resolution 
structures for amorphous solids which are 
generally radiation resistant
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Structural Biology w/ Few Unit-Cell Nanocrystals
 Ability to obtain suitable crystals is a bottle neck 

in structural biology today  
With new experimental capabilities developed to 

handle small nanocrystals, perhaps only a few 
unit-cell in size, coherent diffraction microscopy 
could become a viable method to dramatically 
increase our structural knowledge of biological 
macromolecules

Recently developed Acoustic Drop Ejection 
technique by Soares et al. (BNL) enables 
automatic mounting of microcrystallites onto 
micromesh by acoustic ejection of nL-sized 
droplets onto micromesh

 Successful structure determinations have been 
performed under cryo-protection

One may expect that this type of technology may 
be extended to nanocrystals and to coherent 
diffraction microscopy from these nanocrystals

Left: (A) Stroboscopic 
photomicrograph of a single 2.5 
nL water droplet launched via 
ADE from the liquid surface. (B) 
Image of the insulin microcrystal 
slurry supported on a micromesh 
used to determine the structure. 
The 20 μm × 20 μm x-ray beam 
is centered at the intersection of 
the white cross hairs. (C) 
Illustration of the concepts for the 
raster-scanning x-ray diffraction 
strategy with a microdiffractometer 
and a several-micrometer wide x-
ray beam. Below: High-quality 
electron density maps obtained 
from ADE-mounted, serial 
microcrystallography.

A.S. Soares, et al, “Acoustically Mounted Microcrystals 
Yield High-Resolution X-ray Structures,” Biochemistry, 
50 (21), 4399 (2011).

Work performed on NSLS beamline X25 and APS 23ID-D
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Nanoporous Materials
• Considerable interests in catalytic and sensor applications due to 

large surface-to-volume ratios  
• Mechanical behavior of nanofoam materials have been a subject 

of intensive studies and discussion 
• Metal nanofoams are potentially useful as voltage-tunable 

microelectronic devices, such as actuators, magnets, & resistors, 
because of their electronically tunable physical properties  

• Coherent diffraction 
imaging at nm-scale 
resolutions on nanoporous 
materials will provide the 
necessary information to 
correlate structure to 
function of these materials

• Diffraction-limited x-ray 
source is essential for 
achieving ~nm scale 

Xiao, Shen, et al. 
unpublished

APS 8-ID
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Integrated CDI-Ptychography-SXM

• Diffraction limited source would essentially 
transform any scanning x-ray microscope into 
a potential coherent ptychography instrument

• Such integrated coherent SXM would allow
• Structural information beyond the spatial resolution 

set by focusing optics
• Integrated ptychography and multi-modal SXM 

capabilities, including statistical speckle metrology 
contrast mechanism

• Such system would be ideal to study all types 
of heterogeneous materials

• NSLS-II:  both HXN and SRX beamlines have 
been designed to accommodate these 
potential capabilities

Thibault, et al, Science (2008)

microscope
station

detector
station

diffraction 
tower

NSLS-II HXN
Y. Chu et al. (BNL)
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Summary
• Coherent diffraction imaging has the 

potential to advance structural science  
to noncrystalline specimens

• High-impact applications can be 
categorized according to density 
inhomogeneity length scales:

• High-resolution atomic-scale structures
• High-resolution nanoscale structures
• Model-free structures of order/disorder
• Speckle imaging 

• Future diffraction-limited x-ray sources 
such as ERL or USR will play critical  
role in enabling high-resolution coherent 
diffraction microscopy in high-impact 
applications 


