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Coherence measurements at FEL sources

Measurements at LCLS (June 2010) Measurements at FLASH (October 2010)
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Femtosecond coherent imaging of biological
samples at FLASH

Incident
FEL pulse

L ANt o Nowd Py Topasue Focsonconaent



Coherent pulse 2D crystallography at FELsS

CXDI experiment at FLASH

Diffraction Data
measured at CCD
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For an overview of our FLASH experiments see:

I. Vartanyants et al. Special issue: Intense x-ray science:
The first S years of FLASH,

J. Phys. B: At. Mol. Opt. Phys. 43, 194016 (2010)
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Single particle imaging

Main problem in a single particle imaging:
low scattered signal in a single pulse



Many particles in a coherent beam

Can we determine the structure of
Individual particles in such experiment?



Is there any order In
disordered systems ?

Are there means to observe this
order using x-rays ?



Coherent scattering experiment on colloidal glass

Experiment

Incident
Beam

PMMA

LFS

Beam

Colloid
Sample

2D detector

Wochner P et al., PNAS 106, 11511 (2009)

Angular cross-correlation
function

Diffraction pattern
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X-Ray Cross Correlation Analysis

E- = I =
-0.04 - Q=0.036 nm!
— 0.04 411l 4-fold
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Different type of analysis

SAXS analysis XCCA analysis
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> Probe of high-order correlations:

002 00F 004 005 o008 007V 008 009 070
Q [nm)

Structure factor (HQDI(Q, 1)) ~ [[[[g@rsriew)
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g(r) ~{p(r)p(0)) g,(r',s',t,r',s',t) ~ (p(r,t) p(s,t) p(r',t") p(s', 1))

r) - pair correlation function; . . .
9(n) -p 4-point correlation function

o(r) - electron density.



Earlier use of intensity cross-correlation functions

Scattering experiment on a charged polymer Intensity cross-correlation
spheres in aqueous colloidal suspension function
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scattered light distributions N. Clark et al., PRL 50, 1459 (1983)




Questions

How angular CCFs are related to the

structural properties of disordered systems?

Motivation for our work

- Provide a general theoretical background for

the x-ray angular cross-correlation analysis

- Verify theoretical findings with model calculations

« M. Altarelli, R. Kurta, and |. Vartanyants, Phys. Rev. B 82, 104207 (2010)
 R. Kurta, M. Altarelli, E. Weckert, |. Vartanyants (2011) (in preparation)



Fourier series analysis of CCFs

CCFs Frequency spectra
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Convenient way to study angular cross-correlations
is to perform Fourier series analysis




Fourier series analysis of CCFs

N ' n 1 T —in
Fourier series expansion: |Cq(A) = > Cqe™||Co = o qu(A)e “dA
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Convolution theorem: Cq( A) = 22 .@ Cc? O q | /
°(q)]
1 2 _
Fourier analysis of intensity: g = gy _[ 1(0, p)edo
0

e This result explains a single ~cos(nA) behavior of CCF obtained in
Wochner et al. paper

 Fourier analysis of the CCF does not contain additional information
with respect to Fourier analysis of the intensity
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Questions

How angular CCFs are related to structural

properties of disordered systems?

First answers

* The problem is reduced to calculation of Fourier
coefficients of angular intensity distribution in
the conditions of coherent illumination

* XCCA gives an access to a 4-point correlation
function in the form of a product of two 2-point
correlation functions
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Scattering geometry

Detector 1%

Disordered
sample
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Assumptions: | Kinematical scattering

* Coherent 1llumination of the sample
* Far-field scattering conditions

e Finite size sample




Sample: 3D disordered system with n-fold local symmetry

Kinematical scattering

A(q) = | p(r)e™dr
Electron density of t,\rpe sample

p(r)= Zpk (r-Ry)

- : The scattered amplitude
y | ry e
R
% Alq) =2 e Alq)

direction of the incoming x-ray beam

3D sample that consists of clusters of where A(q) is the amplitude scattered
a certain symmetry that are by one LS _
spatially and orientationally A(q)= j o) (r)e'""dr
disordered




Contribution of different terms to Fourier coefficients C”q

1"(q) e D L@+ DLy (@),
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Term # 1 Term # 2 Term # 3 Term # 45

Term 1: correlations within the same cluster = local structure
Term 2 —Term 4: correlations between different clusters = medium range order.




2D dilute systems

Dilute systems: R >> d

1S 35 30 35 3 35 3




2D dilute systems
. 2>

1. Structure term:

For a cluster with a certain symmetry has non-zero values
only for selected values of n (selection rules)

2. Statistical term: |A’ = < 'n¢> _ Z ing

For a statistically disordered system with the angular distribution p(¢)
depends on a concrete realization of the system (random phasor sum)



X-Ray Cross Correlation Analysis

This could be a
possible explanation of
fast changes of the
Fourier components of
CCFs with small
changes of Q

Q=0.04 nm!
10-fold

-0.04 0=0.042 nm! 0=0.044 nm!
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Statistical term (small number of clusters)
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» Sample consists of 11 pentagonal clusters

* Clusters are spatially disordered and have different

orientations (uniform distribution, 11 orientations) O
DESY



X-Ray Cross Correlation Analysis

This could be a
possible explanation
. of the dynamics

3 ' observed in this
T=vo0 e experiment




Statistical term (big number of clusters)
N
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Mean value:
« Sample consists of 121 Variance: O'f\z =1/N?
pentagonal clusters
. Clusters are spatially It means that the values of Fourier
d%sor.deréd and have a uniform coefficients of CCF will fluctuate
distribution of angles around the mean value ~1/N
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Closed packed systems

Close packed systems: R ~d
Coo DDA DD+ D D+ D

ki=koks=ky  Ki=kokazky  kgmkoks=k,  Ki=kokszk,
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Term # 1 Term # 2 Term # 3 Term # 4%

| For closed packed systems interparticle correlations could not be neglected I )




Oriented systems (big number of clusters)

Disordered 2D sample
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» Sample consists of 121 pentagonal Gaussian distribution of cluster

clusters orientations, 6,=0.02n
e Clusters are spatially disordered
and have a narrow Gaussian Mean value: <AZ> ~ exp(-n2G, 2)

distribution of angles
/"I



Many particles in a coherent beam

Analysis of averaged CCFs




Analysis of averaged CCFs

CCF averaged over a sufficiently large RN
number M of diffraction patterns <Cq (A)> M iZ_I:Cq (A)

ey = Lo
For dilute systems this approach gives —

ror di direct access to Fourier components >

neglec of individual clusters ) <'A“ >

For a uniform distribution of < 2> 1
orientations A‘ = N

For a Gaussian distribution of < 2> —nzdé( _ y ) 1
orientations A)=¢ 1 N T N




Questions

How ERL sources can be used for these type

of experiments?




FLASH experiment on a liquid jet

Detail: » Trap
Nozzle and
Trap Entance =
acuum
10" *mbar
iy
urbo Pump
(adapted from Re: 1500 L/s




FLASH experiment on a liquid jet

HORST chamber Liquid jet




FLASH experiment on a liquid jet

FLASH Parameters

» Wavelength: 8 nm

« 319 harmonic: 2.66 nm
 Pulse duration: 100 fs

* Pulse energy: 99.5 pJ

« FWHM Spectrum: 0.1 nm

« Water jet: 25 ym nozzle

R

FLASH beam
superimposed with the jet



Conclusions

- A convenient way to study angular CCFs 1s to analyze their Fourier
coefficients

*In a general case CCFs deliver a complex information on the
internal symmetry of clusters and their spatial
correlations (medium-range order)

* In dilute systems the main contribution to CCFs is determined by a
local structure symmetry ‘“selection rules” and by the

statistical distribution of different orientations

* In close-packed systems correlations between clusters become

important



Thank you for your attention
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