Coherent Diffractive Imaging and Determining Structural Properties from Cross-correlation Analysis

I. Vartaniants

DESY, Hamburg, Germany National Research Nuclear University, "MEPhI", Moscow, Russia

XDL2011 Workshop 1-

Coherent Imaging Group at DESY

- A. Mancuso (now@XFEL)
- O. Yefanov
- A. Singer
- J. Gulden
- R. Kurta
- U. Lorenz
- R. Dronyak

Coherence measurements at FEL sources

Measurements at LCLS (June 2010)

Measurements at FLASH (October 2010)

fit

I. Vartanyants et al., (2011) (Phys. Rev. Lett. submitted) available on ArXive: http://arxiv.org/abs/1105.3898

A. Singer, F. Sorgenfrey et al., (2011) (in preparation)

Femtosecond coherent imaging of biological samples at FLASH

Best of 2010

A. Mancuso *et. al.* New J. Phys. Topical issue: Focus on coherent beams, **12** 035003 (2010)

Coherent pulse 2D crystallography at FELs

CXDI experiment at FLASH

For an overview of our FLASH experiments see:

I. Vartanyants *et al.* Special issue: Intense x-ray science: The first 5 years of FLASH,

J. Phys. B: At. Mol. Opt. Phys. 43, 194016 (2010)

A. Mancuso, et al., PRL **102**, 035502 (2009)

Single particle imaging

Main problem in a single particle imaging: low scattered signal in a single pulse

Many particles in a coherent beam

Can we determine the structure of individual particles in such experiment?

Is there any order in disordered systems ?

Are there means to observe this order using x-rays ?

Coherent scattering experiment on colloidal glass

Experiment

Diffraction pattern

Wochner P *et al.*, PNAS **106**, 11511 (2009)

Angular cross-correlation function

$$C_{Q}(\Delta) = \frac{\langle I(Q, \varphi) I(Q, \varphi + \Delta) \rangle_{\varphi} - \langle I(Q, \varphi) \rangle_{\varphi}^{2}}{\langle I(Q, \varphi) \rangle_{\varphi}^{2}}$$

X-Ray Cross Correlation Analysis

Different type of analysis

Earlier use of intensity cross-correlation functions

Scattering experiment on a charged polymer spheres in aqueous colloidal suspension

Intensity cross-correlation function

Photographs of typically observed scattered light distributions

$$C(\varphi,\tau=0) = \frac{\left\langle I(q_1,\varphi=0,t)I(q_2,\varphi,t)\right\rangle}{\left\langle I(q_1,t)\right\rangle \left\langle I(q_2,t)\right\rangle}$$

The measured intensity crosscorrelation function in 2D liquid

N. Clark et al., PRL 50, 1459 (1983)

Questions

How angular CCFs are related to the

structural properties of disordered systems?

Motivation for our work

• Provide a general theoretical background for

the x-ray angular cross-correlation analysis

- Verify theoretical findings with model calculations
- M. Altarelli, R. Kurta, and I. Vartanyants, Phys. Rev. B 82, 104207 (2010)
- R. Kurta, M. Altarelli, E. Weckert, I. Vartanyants (2011) (in preparation)

Fourier series analysis of CCFs

Convenient way to study angular cross-correlations is to perform Fourier series analysis

Fourier series analysis of CCFs

Fourier analysis of intensity:

$$I_q^n = \frac{1}{2\pi} \int_0^{2\pi} I(q,\varphi) e^{-in\varphi} d\varphi$$

- This result explains a single $\sim cos(n\Delta)$ behavior of CCF obtained in Wochner *et al.* paper
- Fourier analysis of the CCF **does not** contain additional information with respect to Fourier analysis of the intensity

Questions

How angular CCFs are related to structural

properties of disordered systems?

First answers

• The problem is reduced to calculation of Fourier coefficients of angular intensity distribution in the conditions of coherent illumination

• XCCA gives an access to a 4-point correlation function in the form of a product of two 2-point correlation functions

Scattering geometry

Assumptions:

- Kinematical scattering
- Coherent illumination of the sample
- Far-field scattering conditions
- Finite size sample

Sample: 3D disordered system with n-fold local symmetry

Kinematical scattering

$$A(\mathbf{q}) = \int \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$$

Electron density of the sample $\rho(\mathbf{r}) = \sum_{k=1}^{N} \rho_k(\mathbf{r} - \mathbf{R}_k)$

The scattered amplitude

$$A(\mathbf{q}) = \sum_{k=1}^{N} e^{i\mathbf{q}\cdot\mathbf{R}_{k}} A_{k}(\mathbf{q})$$

3D sample that consists of clusters of a certain symmetry that are spatially and orientationally disordered where $A_k(\mathbf{q})$ is the amplitude scattered by one LS

$$A_k(\mathbf{q}) = \int \rho_k(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$$

Contribution of different terms to Fourier coefficients Cⁿ_a

2D dilute systems

2D dilute systems

For a cluster with a certain symmetry has non-zero values only for selected values of *n* (selection rules)

2. Statistical term:
$$A^2 = \left\langle e^{in\phi} \right\rangle_{\phi} = \frac{1}{N} \sum_{k=1}^{N} e^{in\phi_k}$$

For a statistically disordered system with the angular distribution $p(\phi)$ depends on a concrete realization of the system (random phasor sum)

X-Ray Cross Correlation Analysis

This could be a possible explanation of fast changes of the Fourier components of CCFs with small changes of Q

Statistical term (small number of clusters)

Statistical term:

$$A^{2} = \left| \left\langle e^{in\phi} \right\rangle_{\phi} \right|^{2} = \frac{1}{N} \left| \sum_{k=1}^{N} e^{in\phi_{k}} \right|^{2}$$

Mean value: $\langle A^2 \rangle = 1/N$ Variance: $\sigma_{A^2}^2 = 1/N^2$

- Sample consists of **11 pentagonal clusters**
- Clusters are spatially disordered and have different orientations (uniform distribution, **11 orientations**)

X-Ray Cross Correlation Analysis

This could be a possible explanation of the dynamics observed in this experiment

Statistical term (big number of clusters)

- Sample consists of **121** pentagonal **clusters**
- Clusters are spatially disordered and have a **uniform** distribution of angles

$$A^{2} = \left| \left\langle e^{in\phi} \right\rangle_{\phi} \right|^{2} = \frac{1}{N} \left| \sum_{k=1}^{N} e^{in\phi_{k}} \right|^{2}$$

It means that the values of Fourier coefficients of CCF will fluctuate around the mean value ~1/N

Closed packed systems

Oriented systems (big number of clusters)

Disordered 2D sample

- Sample consists of **121** pentagonal **clusters**
- Clusters are spatially disordered and have a **narrow Gaussian** distribution of angles

Gaussian distribution of cluster orientations, $\sigma_{\phi}=0.02\pi$

Mean value: $\langle A^2 \rangle \sim \exp(-n^2 \sigma_0^2)$

Many particles in a coherent beam

Analysis of averaged CCFs

Z. Kam, Macromolecules 10, 927 (1977)D. K. Saldin et al., Phys. Rev. B 81 (2010)

Analysis of averaged CCFs

CCF averaged over a sufficiently large number M of diffraction patterns

$$\left\langle C_q(\Delta) \right\rangle = \frac{1}{M} \sum_{i=1}^{M} C_q^i(\Delta)$$

Fourier analysis $\langle C^n \rangle = - \sum_{q}^{m} C_q^{ni}$ For dilute systems this approach gives
direct access to Fourier components
of individual clusters $) \cdot \langle$

For a uniform distribution of orientations

$$\left\langle A_{n}^{2}\right\rangle \Rightarrow \frac{1}{N}$$

For a **Gaussian** distribution of orientations

$$\left\langle A_{n}^{2}\right\rangle \Longrightarrow e^{-n^{2}\sigma_{\varphi}^{2}}\left(1-\frac{1}{N}\right)+\frac{1}{N}$$

How ERL sources can be used for these type of experiments?

FLASH experiment on a liquid jet

Detail:

M. Faubel MPI für Strömungsforschung, Göttingen, Germany

FLASH experiment on a liquid jet

HORST chamber

Liquid jet

Collaboration with: T. Saditt (Göttingen) A. Rosenhahn (Heidelberg) A. Mancuso (European XFEL)

FLASH experiment on a liquid jet

FLASH Parameters

- Wavelength: 8 nm
- 3rd harmonic: 2.66 nm
- Pulse duration: 100 fs
- Pulse energy: 99.5 µJ
- FWHM Spectrum: 0.1 nm

FLASH beam superimposed with the jet

• Water jet: 25 µm nozzle

FLASH, May 28-29, 2011

Conclusions

- A convenient way to study angular CCFs is to analyze their **Fourier coefficients**
- In a general case CCFs deliver a complex information on the internal symmetry of clusters and their spatial correlations (medium-range order)
- In **dilute systems** the main contribution to CCFs is determined by a local structure **symmetry** "selection rules" and by the **statistical distribution** of different orientations
- In **close-packed systems** correlations **between clusters** become important

Thank you for your attention

