

Time-resolved Scattering of Proteins in Solution: New Opportunities for an ERL

<u>Philip Anfinrud</u> Laboratory of Chemical Physics, NIDDK National Institutes of Health, Bethesda, MD USA

Wild-type MbCO L29F MbCO (MbCO + Mb*CO)

Movie posted as supplementary online material for: Schotte et al., J. Struct. Biol., **147(3)**, 235-246 (2004)

See also Schotte et al., Science, 300, 1944-1947 (2003)

What do we measure?

0

- 1-D scattering fingerprint
- SAXS region informs about size and shape, and is sensitive to <u>volume</u> changes as well as <u>mass transport</u> into and out of the protein.
 - WAXS region is sensitive to structure at higher resolution.

Time-resolved SAXS/WAXS diffractometer

APS:BioCARS Experimental Hutch

NIDDK Contributions to BioCARS Upgrade

High-speed Chopper Upgrade \$72 K

FPGA-based Timing System/LaueCollect

High-power Laser System: ~\$500 K

A.

Beam-conditioning optics and Diffractometer: ~\$120 K

Angular Integration ^{8×107} B - Helium+Capillary+Buffer+Protein - Helium+Capillary+Buffer 6×107 - Helium+Capillary

Static SAXS/WAXS of MbCO

Time-resolved SAXS/WAXS

SAXS region is sensitive to volume changes and mass transport: $I(q=0) \propto (n_p - n_b)^2$, where n_p and n_b are the number of electrons in the protein and in an equivalent volume of buffer (21,580 Å³), respectively.

[photons/bin

٩Ā

0.0

0.5

1.0

Time-resolved SAXS/WAXS of photolyzed MbCO

Its all about photons...

BioCARS

- 6×10⁹ photons on the detector at time of readout (integrate 1100 pump-probe pairs)
- few percent of total scattering comes from protein (50 mg/ml)
- few percent change in scattering due to pump-induced structural change
- Signal of interest: ~10⁻⁴

Short-period undulators

U23+U27 Undulators

(NIH/NIDDK paid \$327K for magnets)

X-RAY DATA BOOKLET

Source Characteristics

	APS (BioCARS)	LCLS	Cornell ERL (high flux)
E: electron energy (GeV)	7	14.35	5
bunch charge (nC)	15	1	1
pulse duration (ps)	94	0.1	0.1
L: undulator length (m)	2.4+2.4	130	25
undulator period (mm)	23+27	30	18
minimum gap (mm)	10.5	6	5
x-ray energy (keV)	12	8	8
repetition rate (Hz)	41	120	up to 100,000
x-ray flux (ph/pulse)	3×10 ⁹	1.5×10 ¹²	~5×10 ⁸
Lances for A data (1947)		<u>n</u> 8 8	1

 $P_{\rm T}[kW] = 0.633 E^2[GeV]B_0^2[T]L[m] I[A]$

~ 20% of BioCARS

Spot Size/Repetition Frequency

BioCARS focus

- 25-mm translation range
- Translate sample 240 µm/shot to expose "fresh" volume
- move-stop-acquire sequence
- •5g acceleration allows 41 Hz operation

Cornell ERL focus (target)

🔵 ~20 μm

 $\mathbf{v} \uparrow \land \land$

- 25-mm translation range
- •5g acceleration
- 156 mm/s sample translation (restrict acceleration to 10% of stroke; $\Delta \tau < 30 \mu s$)
- 20-µm spot size (50-µm separation) \rightarrow 450 pulses in 144 ms
- ~ 2800 Hz data acquisition (back and forth scanning)
 - ~2 times faster data collection than BioCARS

Time-Resolved Polarized B-state Spectra

Ligand migration trajectories in L29F MbCO Phe site Xe4 site

-20.0 ps

Movie posted as supplementary online material for: Hummer, Schotte, and Anfinrud, PNAS 101, 15330-15334 (2004)

Summary and Outlook

- Time-resolved SAXS patterns afford exquisite sensitivity to protein volume changes and mass transport into and out of the protein.
- Time-resolved WAXS fingerprints contain a wealth of structural information down to 2.5 Å, and provide stringent constraints for putative models of conformational states and structural transitions between them.
- Cornell ERL could improve the time resolution of SAXS/WAXS to ~100 fs.
- Time-resolved SAXS/WAXS is a valuable complement to time-resolved Laue crystallography, time-resolved laser spectroscopy, and computational modeling, and is proving increasingly useful in studies of protein structure, function, and dynamics.

