Biological Opportunities with Solution Scattering

XDL 2011

Brian R. Crane

Cornell University, Ithaca NY bc69@cornell.edu

Bacterial Transmembrane Receptors

Histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, photosensors, energy sensors, phosphatases

Parkinson, Ann. Rev. Microbiol 2010

Many proteins don't function properly in the choice environment of analysis

Aer phosphorylation Assays (CheA/CheW/CheY)

	E.coli Tar	Disk Alone	Detergent Aer	Vesicle Aer	Aer:Disc 0.9	Aer:Disc 1.7
	Excess FADox	5	- +	- +	- +	. +
Phospho CheY	-					

Joanne Widom, Mingshan Li and Jerry Hazelbauer

Aerotaxis (energy/redox) receptors

Airola et. al., Structure, 2010

• Aer : EcAer homolog, 1 HAMP membrane-bound, aerotaxis

- Aer2
 - Soluble
 - Contains 5 HAMP domains
 - Role of Aer2 is unclear
 - Mediate response to diatomic gas (O₂, CO, NO) in *E. coli*

(Watts et. al., Mol. Micro. 2011)

SAXS models indicate a linear domain arrangement

Domain Orientations in the Sensing Region

Chemoreceptors MCPs

CheA:CheW:MCP Ternary Complex determined by pulsd dipolar ESR

- P5, - W - P3

Bhatnagar et al Biochemistry (2010)

GASBOR Envelopes generated of the ternary complex

Variability in envelopes, but they all show kinase binding at one end in an asymmetric manner

This is great! - what if you had data on oriented samples?

Direct phasing of partially oriented samples -John Spence and Coworkers

Saldin, etl al. Phys Rev B 81 174105 (2010); Saldin et al. New J Phys. 12 (2010) 035014; Kam (1977, 1980, 1982)

Gold Particles

Projection of a Potassium channel oriented in a membrane

Alignment methods to augment solution scattering

Restraints from angular correlations of the molecular transform with *ab initio* and structure-informed reconstruction methods.

How far could (modest) alignment of a molecules get you?

Alignment methods

Magnetic Fields - Even with paramagentic molecule - order parameters of 10⁻³ - No Way

Electric Fields - Static - Protein dipole moment - 200-1000 D - still need 10⁹ V/m - ion mobility, electrolysis etc.

Non-resonant Nd:YAG (I~10¹² W/cm²; I = 1064 nm) 3x10⁹ V/m

Molecules ionize at > $3x10^{10}$ V/m

But - anisotropy of the polarization tensor is what matters, not the permanent dipole moment

Small molecules in gas phase - done, in solution, simulated. - big molecules, not known

Would polarization anisotropy be enough? - simulations say ~ 100 Å³ (J. Chem Phys (2004) 120 9123) - probably OK

```
Proteins \alpha anisotropy - 1000-10,000 Å<sup>3</sup> (depends on \epsilon) (Colloids and Surfaces B (2007) 56 19)
```

Problems

Time scale for re-orientation - on the order of rotational diffusion - 10-50 nsec - maybe too long for the pulse

Would the molecule distort instead or re-orient? - probably at least to some extent.

Aligned, but not directional - up and down - apply a direct field too?

Effect of permanent and induced fields from neighboring molecules

Physical Alignment - Force and Media

Shear flow - amyloid and protein fibers (Biomacromolecules, 8 77, 2007)

Alignment media - lipids, polymers, phage, nanodiscs, native membranes, SAMS, patterning on surfaces

Poor diffracting crystals

Membrane enrichment techniques for mammalian membrane proteins (retroviral protein induced proteoliposomes)

Better contrast - Anomalous signals (very weak)? Heavy atom probes?

"Natural Alignment" -

Chemoreceptors form clusters at the poles of cells

Briegel, Jensen *et al.* Mol Micro. (2008); Kursigara, Subramanium et al. J. Bact. (2008);

Model for The Membrane Receptor Arrays

The Flagellar Rotor

Thomas, DeRosier Salmonella

Liu, Norris et al (2009) J. Bact. 191:5026 B. burgdorferi

Radially symmetric copies of switch complexes in the flagellar rotor

Paul et al (2011) EMBO J. Park et al (2006) Proc. Natl. Acad. Sci.

Time resolved SAXS on photoactivatable systems

Time-resolved SAXS to monitor VVD Light Induced Conformational Change

Lois Pollack Jessica Lamb Brian Zolotowski (J. Am. Chem. Soc. 2008)

Conclusions

Much potential for solution scattering in a high flux, small focus regime

It's already an over achieving technique - what will increased orientational restraints bring?

You will be sample limited, but you always are - there will be work arounds

You don't need high resolution and fast times to answer important questions

Chemistry and Chemical Biology

Michael Airola Joanne Widom Abiola Pollard

Alexandrine Bilwes-Crane Loma Linda University

Kylie Watts

Applied and Engineering Physics

Lois Pollack Jessica Lamb

> Advanced Center for ESR Technologies (ACERT)

> > Peter Borbat Jack Freed

CHESS, ALS (SIBYLS Beam Line)

Light-state Dimer Crystal Structure of VVD

Anand Vaidya

Structure fits the time resolved SAXS envelope quite well

N-Terminal HAMPs are required for function

Kylie Watts, in preparation

The dark state of Cys71Val forms an extended monomer that is partially dimerized in the absence of light

Lamb, Zoltowski, Crane, Pollack J. Mol. Biol. (2009)

Reconstructed model

Aer2 fragment	Dmax (Å) P(r)	Dmax (Å) <i>Ab initio</i> model
Aer2 1-172	115	112
Aer2 1-317	205	193
Aer2 1-402	250	238

PAS domains in close proximity ... possible role for dimerization?

Paul et al., Figure 1

Extension to a lattice model - P3 between trimers?

Strategy for structure determination of protein complexes with spin-labeling

Bhatnagar et al, Methods Enzymol. 2007

Inter-domain distances by spin-labeling

Protein **Spin-Labeling** 0-N с s-s-- сн₃ + нз-MTSSL **MTSSL** $-C_{\beta}\frac{1}{l}$ protein + H $-\frac{0}{2}$ - CH₃ (1-Oxyl-2, 2,5,5tetramethylpyrroline-3-

methyl)methanethiosulfonate)

Site-directed spin labeling: Hubbel et al. Nat Stuct. Biol. (2000)

Nanodisk-embedded chemoreceptors

Boldog, Grimme, Li, Sligar and Hazelbauer PNAS (2006) **103** 11509-11514 Boldog, Li and Hazelbauer Meth. Enzymol. (2007) **423** 317-335

Structure of the ternary complex:

Two limits for receptor orientation

