Next generation X-ray Solution Scattering

Lee Makowski
Northeastern
University

WAXS Data Set from Hb-150 mg/ml

SAXS is more intense than WAXS

SAXS can be used to determine Rg; shape; oligomeric state... (see Dmitri talk!)

WAXS cannot be used to extend the resolution of shape determinations nor improve the estimate of $\mathrm{Rg} . .$.

Wide-angle x-ray solution scattering

most future applications will require measurement of small (and in some cases - very small) differences in intensity
critical features for advances:
very high stability
strong signal (but not so much intensity as to FRY the samples)
minimal background
accounting for all features of the data/background

Wide-angle x-ray solution scattering

test molecular models
detect/characterize structural changes
characterize ensembles
MADMAX - anomalous WAXS (atomic positions)
characterize structural intermediates
membrane proteins
TR-WAXS (see Philip's talk)
greatly enhanced by computational methods

Solution scattering pattern from a protein is:

accurately predicted by atomic coordinates of protein
closely related to the distribution of interatomic distances in the protein
inadequate in information content to completely specify the structure of the protein

Success of this approach also provides strong evidence that MD approaches are getting water of hydration correct
testing molecular models..

myoglobin

discrepancies are suggestive of small structural fluctuations of protein in solution

Ensembles...

sets of accessible conformations accessible from one another through structural fluctuations
modulated by ligands, environment...
increasingly implicated in protein function
give rise to predictable changes in solution scattering

WAXS studies of protein ensemble - how does polymorphism effect the scattering pattern?

scattering from spheres of 14; 15 and $16 \AA$ radius minima at $\sim 1 /$ (radius)

scattering from a solution of all three spheres looks like the average sphere but with minima filled in and maxima muted
so...the broader the ensemble; the greater the effect
WAXS is highly sensitive to this effect...
... can characterize an ensemble by exhaustive enumeration...

Multidomain assembled states of Hck tyrosine kinase in solution

Sichun Yang ${ }^{+2}$, Lydia Blachowicz*, Lee Makowskỉ, and Benoit Roux ${ }^{+4 \boldsymbol{1 4}}$
PNAS | September 7, 2010 | vol. 107 | no. 36 | 15757-15762

Representatives of families of conformations abundant under different conditions
peptides modulate the relative abundances of conformations in hck Kinase - shifting equilibrium from largely inactive (states 1-4) to largely active conformations (5-9)

Proteins in dynamic equilibrium

Protein molecules in solution exist as an equilibrium of different conformations, but the sizes and shifts of these populations cannot be determined from static structures. A report now shows how they can be measured in solution.

Multidomain assembled states of Hck tyrosine kinase in solution
Sichun Yang ${ }^{22}$, Lydia Blachowicza, Lee Makowskib, and Benoit Roux ${ }^{2, \mathrm{~h}, 1}$
PNAS | September 7, 2010 | vol. 107 | no. 36 | 15757-15762

8.

Representatives of families of conformations abundant under different conditions

... but for many applications an exhaustive enumeration is not necessary, possible, or appropriate to the question being asked

B.

Fluctuations are expressed in the scattering pattern through the variation of interatomic vector lengths
interatomic vectors of a certain length are replaced by a distribution of vector lengths...

WAXS pattern always gives you a pair-distribution function $p(r)$; A simple model for increased fluctuations is to replace every interatomic distance in the protein by a distribution of distances

$$
F(r)=\exp \left(-\left(r-r_{0}\right)^{2} / 2 \sigma\right)
$$

where σ is a function of vector length:

$$
\sigma=a r^{n}
$$

Figure 4a

MADMAX - multi-wavelength anomalous diffraction using medium angle x-ray solution scattering

$$
\begin{aligned}
& I(k)=\Sigma_{i} \Sigma_{j} f_{i} f_{j}^{*}\left(\sin \left(k r_{i j}\right) / k r_{i j}\right) \quad \text { [Debye formula] } \\
& f=f^{o}+f^{\prime}+i f^{\prime \prime}
\end{aligned}
$$

$$
I(k)=\Sigma_{i} \Sigma_{j}\left[f_{i} \circ f_{j} o+2 f_{i} \circ f_{j}^{\prime}+f_{i}^{\prime} f_{j}^{\prime}+f_{i}{ }^{\prime \prime} f_{j} "\right]\left(\sin \left(k r_{i j}\right) / k r_{i j}\right) .
$$

$$
\begin{aligned}
& \Delta l(k)=I_{e}(k)-I_{o}(k) \\
& =2 \Sigma_{i} \Sigma_{j} f_{i}^{o} f_{j}^{\prime}\left(\sin \left(k r_{i j}\right) / k r_{i j}\right)+\Sigma_{i} \Sigma_{j}\left[f_{i}^{\prime} f_{j}^{\prime}+f_{i}^{\prime \prime} f_{j}^{\prime \prime}\right]\left(\sin \left(k r_{i j}\right) / k r_{i j}\right) .
\end{aligned}
$$

MADMAX - multi-wavelength anomalous diffraction using medium angle x-ray solution scattering

$$
\begin{aligned}
& I(k)=\Sigma_{i} \Sigma_{j} f_{i} f_{j}^{\star}\left(\sin \left(k r_{i j}\right) / k r_{i j}\right) \\
& f=f^{o}+f^{\prime}+i f " \\
& I(k) \quad=\Sigma_{i} \Sigma_{j}\left[f_{i} o f_{j}{ }^{o}+2 f_{i} \circ f_{j}{ }^{\prime}+f_{i}{ }^{\prime} f_{j}{ }^{\prime}+f_{i}{ }^{\prime \prime} f_{j}{ }^{\prime \prime}\right]\left(\sin \left(k r_{i j}\right) / k r_{i j}\right) . \\
& \Delta I(k) \quad=I_{e}(k)-I_{o}(k) \\
& =2 \Sigma_{i} \Sigma_{j} f_{i} f_{j}^{\prime}\left(\sin \left(k r_{i j}\right) / k r_{i j}\right)+\Sigma_{i} \Sigma_{j}\left[\left[f_{i}^{\prime} f_{j}^{\prime}+f_{i}^{\prime \prime} f_{j}^{\prime \prime}\right]\left(\sin \left(k r_{i j}\right) / k r_{i j}\right) .\right. \\
& \text { cross terms } \\
& \text { pure anomalous terms }
\end{aligned}
$$

MADMAX - multi-wavelength anomalous diffraction using medium angle x-ray solution scattering
can determine distance between anomalous scatterer and center of mass of the protein
similar to not-so-heavy atom derivative

- 6 electrons

collect data at absorption edge and remote from edge

Myoglobin - calculated vs observed

Hemoglobin - calculated vs observed

what about fluctuations that occur during function?
can intermediate states be observed?

Adenylate kinase +/- inhibitor

(with George Phillips)

Catalyzes the interconversion of AMP; ADP and ATP

$$
2 A D P \longleftrightarrow A M P+A T P
$$

Flaps cover the reagents once in the active site

Form of scattering suggests flaps very flexible in unliganded form

Adenylate kinase +/- inhibitor ... and during catalysis

During catalysis closely resembles inhibited form
but cannot be constructed as linear combination of the two endpoints

Cycling Adenylate Kinase

Can we see what some of these states look like?

Singular Value Decomposition

data from ~ 100 conditions
SVD suggests 4 basis vectors can be used to reconstruct all data sets
suggests that end points plus at least 2 intermediate states are sufficiently abundant to give rise to observable scattering...

the future...

> small differences critical
> high signal
> low noise
> background must be completely accounted for
> high stability - need to be able to scale hundreds of patterns taken sequentially

Thanks

Bob Fischetti
Dave Gore
Diane Rodi
Suneeta Mandava

Sanghyun Park (ANL)
Jaydeep Bardhan (Rush)
David Minh (ANL)
Jyotsana Lal (ANL)
Sichun Yang (Case)
Benoit Roux (UCh)
Tobin Sosnick (UCh) Karl Freed (UCh)
Juoko Virtanen (UCh)

Chien Ho (CMU)
George Phillips (UW)
Mike Daily (UW)
Quiang Cui (UW)

Steve Kent (U Ch)
Vladimir Torbeev (U Ch)
Celia Schiffer (UMass)

DOE

ANL
NIH

