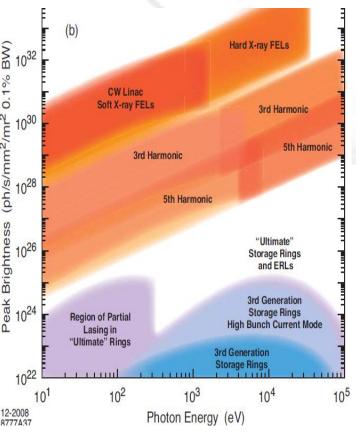
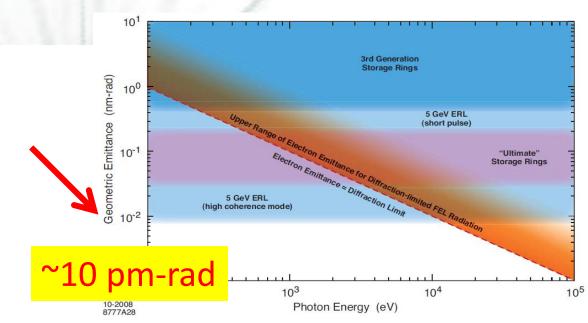
What is the "ideal" x-ray source?

Chi-Chang Kao (Joel Brock and Jerry Hasting)

What is the "ideal" x-ray source?


• The ideal source for a specific problem?

The ideal source that will meet the needs of everyone?

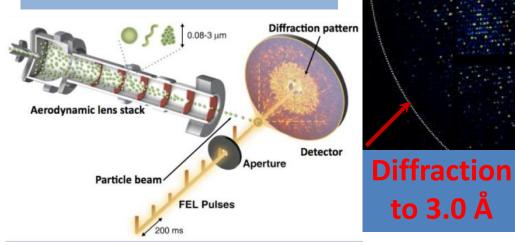

• The ideal source that could be built?

ANL-08/39 BNL-81895-2008 LBNL-1090E-2009 SLAC-R-917

Science and Technology of Future Light Sources

A White Paper (December 2008)

X-ray FELs: National and International Context

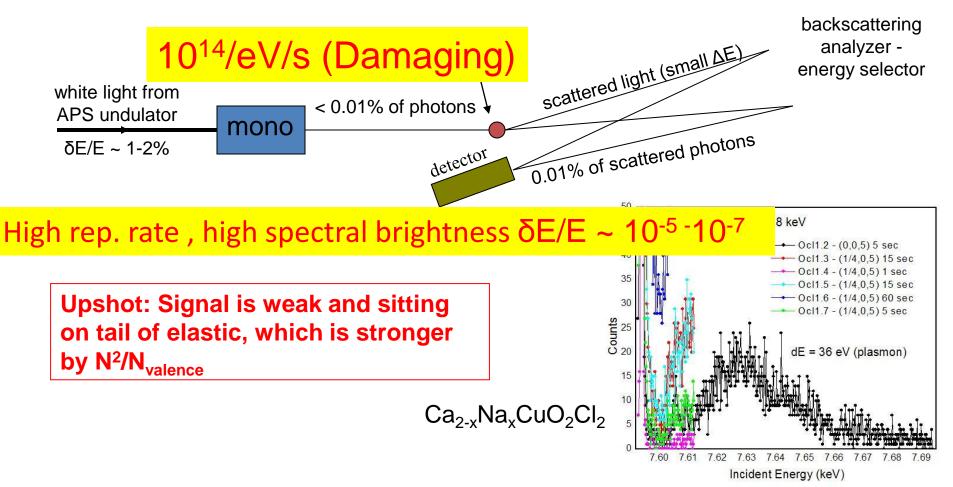

- LCLS is the first hard x-ray FEL; LCLS-II will be built in the next six years
- NGLS has CD-0 and is making plans for CD-1
- Other US DOE FEL initiatives are developing (JLab, ANL, LANL)
- Many XFEL projects on the international stage: **SPring8**, FERMI, PSI, FLASH and FLASH-II, European XFEL, Pohang, Shanghai...
- LCLS works extremely well, having benefited from accelerator developments from the HEP era, but its performance could be significantly enhanced with R&D in several technology areas
- NGLS performance will benefit in its initial operation by R&D for some key components (i.e. high-rep gun, beam spreaders, etc)
- R&D is needed to realize the full scientific potential of present and future X-ray FEL sources and for the US to remain at the forefront of FEL science and technology

Hard x-ray Bio-Diffraction

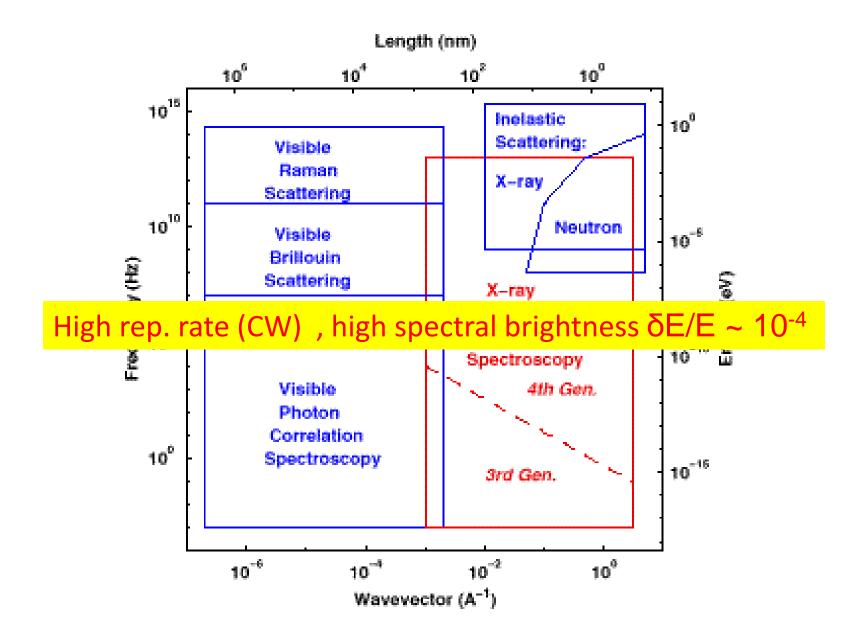
Spokesperson: Sebastien Boutet, LCLS Samples: **Petra Fromme ASU**

9.3 keV (1.3 Å wavelength)

Single shot: 1 mJ pulse (5 \times 10¹¹ p Short pulse, ;Bandwidth ; Peak power 40 fs duration


Other studied nanocrystals diffract to 1.9 Å

to 3.0 Å


Inelastic x-ray scattering – why it's so hard (Finkelstein, IXS 2010)

IXS measures $S(\mathbf{k}, \omega)$, i.e. the charge response.

- 1. X-ray diffraction is coherent, scales like N²
- 2. IXS incoherent, scales like $N_{valence} \sim 0.1 e \ll N$
- 3. Mono and analyzer throw away 99.9999% of the photons

X-ray Photon Correlation Spectroscopy

X-ray FEL Performance: Present and Future

Parameter	Now	Future
Photon energy (keV)	Up to 10	Up to 100
Pulse repetition rate (Hz)	≤ 120	10²- ≥10 ⁶
Pulse duration (fs)	~2-300	<1-1000
Coherence, transverse	diffraction limited	diffraction limited
Coherence, longitudinal	not transform limited	transform limited**
Coherent photons/pulse	2x10 ¹² -3x10 ¹³	10 ⁹ - 10 ¹⁴
Peak brightness (usual units ⁺)	10 ³³	10 ³⁰ - 10³⁴
Peak/average power (W)	7x10 ¹⁰ /~1	> 10 ¹² / <u>></u> 10 ³
Average brightness (usual units ⁺)	4x10 ²²	10 ¹⁸ - 10²⁷
Polarization	linear	variable, linear to circular
Stability – intensity/energy RMS	3-15%	< 3%
Stability – time (fs) RMS	50	< 5
Stability – % mode size	10%	< 10%

⁺photons/s/mm²/mrad²/0.1% BW

$${}^{*}_{*}\Delta t \cdot \Delta E_{ph} = \frac{h}{4\pi} \quad (Gaussian)$$
 (Gaussian)

Summary

- Identify problems that can capture the imagination of many
- Organize the community to develop the scientific case, the necessary tools
- Work with accelerator community to support the R&D effort