$PULSE \stackrel{\stackrel{\scriptstyle}{=}}{=} STANFORD$

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

David A. Reis

PULSE Institute, Departments of Photon Science and Applied Physics, Stanford University SLAC National Accelerator Laboratory

Science at the Hard X-ray Diffraction Limit: Ultrafast Science... Cornell, June 20–21, 2011

phonons play defining role in materials properties PUESE

Electrical and thermal conductivity

Acoustic phonon "engineering"

2.0

Ferroelectricity

materials with coupled degrees of freedom

Superconductivity

Ultrafast Tickle and Probe

phote (star)

Why do physics in the time domain?

Spectra alone are sometimes inadequate

Separation of time-scales

Sheu et al. unpublished

Trigo et al. unpublished

Example: Photoexcited bismuth (all optical experiments)

Coherent A_{1g} Mode is strongly softened and chirped.

Ultrafast Tickle and Probe

Murray et al. PRB 72, 060301 (R) 2005.

Low excitation (tickle regime) Pump-probe vs. Spontaneous Raman

Collaboration with Roberto Merlin, UM

Subtle difference between the two...

Ultrafast Tickle and Probe

Jian Chen, Jinjing Li, unpublished

Electronic Softening in Bi by femtosecond X-ray Diffraction PU- SE

Momentum and Time-resolved Phonon Spectroscopies virtually nonexistent

phonon-phonon and electron-phonon coupling, interatomic forces.

x-ray diffuse scattering: measure deviations from average structure

Very weak, we need bright x-ray pulses!

Example, diffuse scattering by thermal phonons

Bragg scattering

Phonon Dispersion from TDS and limitations

Simulation of InP impulse softening of TA by 20% P U SE

Fourier transform of I(q,t) yields phonon dispersion (excited state)

Ultrafast Tickle and Probe

Hillyard, Reis and Gaffney PRB 77, 195213 (2008).

If you want to go really crazy, multiple colors, incidence angle, stimulated x-ray (electronic) Raman selected w & q...

Can we do x-ray 4-wave mixing, ala K. Nelson or S. Mukamel?

Synchrotron data limited by time-resolution

Average of 5 shots

BioCARS beamline at APS ~1% of LCLS photons/pulse but 100ps

Ultrafast Tickle and Probe

Trigo et al., unpublished

Time-resolved x-ray diffuse scattering with 100ps resolution

Primarily TDS

But, more than heating

[l(400ps) -l(100ps)] / l(off)

If processes were only thermal,

$$\frac{\partial I(t)}{\partial t} \propto \Delta n \longrightarrow \frac{1}{I_0} \frac{\partial I(t)}{\partial t} \propto \Delta T = \text{const}$$

Interpretation by Singular Value Decomposition

Complex dynamics in the phonon populations due to the anharmonic coupling between modes

SE

PU

Contribution from acoustic phonon branches

Can we modify optical phonon lifetime?

Marino Trigo, Jian Chen, Mason Jian, Matthias Fuchs, Mike Kozina, Shambhu Ghimire, Vinayak Vishwanath, PULSE, SLAC, Stanford

Stanford PULSE Institute, SLAC National Accelerator Laboratory

Yu-Miin Sheu, *Los Alamos* Tim Graber, Robert Henning, *CARS, U. Chicago*

Supported by the U.S. Department of Energy, Office of Basic Energy Science

Lattice instabilities

Model assuming uniform softening Gives similar results to inertial dynamics

formation of a nonequilibrium liquid

DFPT predicts instability first develops at X point

