

# Ultrafast X-ray Studies of Complex Materials: Science Challenges and Opportunities



**Robert Schoenlein** 

Materials Sciences Division - Ultrafast Materials Program Chemical Sciences Division – Ultrafast X-ray Sciences Laboratory Next Generation Light Source

Cornell XDL 2011 Workshop – June 2011



# **Ultrafast Dynamics in Complex Materials - Beyond Bloch**

# How do the properties of matter emerge from the: correlated motion of electrons, and coupled atomic and electronic structure?



Understand the Interplay between Atomic and Electronic Structure

- Valence electronic structure energy levels, charge distribution, bonding, spin
- Atomic structure coordination, atomic arrangements, bond distances



\*\*\*\*\*

LBNL



# **Fundamental Time Scales in Condensed Matter**



#### **Ultrafast Measurements:**

- separate correlated phenomena in the time domain
- direct observations of the underlying correlations as they develop





# **Gross Generalizations – Workshop Discussion**





# Outline

### Ultrafast Dynamics in Colossal Magnetoresistive (CMR) Manganites

Ultrafast photo- and vibrationally-induced insulator-metal transition in Pr<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub>

#### Time-resolved X-ray Absorption, Scattering in CMR Manganites

- Electronic structure time-resolved XANES (O K-edge, Mn L-edge)
- Dynamics of charge, orbital, and spin ordering

### **Energy-Recovery Linac**

- Ultrafast, high-rep-rate, diffraction-limited hard X-rays
- Science challenges and opportunities





\*\*\*\*\*

LBNL



Office of Science



- Sub-10 fs probing resolves phase-transition dynamics
- The IM phase transition does not occur promptly:  $\tau_1 = 50$  fs,  $\tau_2 = 150$  fs
  - the photo-induced metallic state is not driven directly by carrier injection
  - requires rearrangement in slower degrees of freedom of the system.
- Reflectivity changes are modulated at characteristic frequencies of the system
  - coherently excited vibrational modes 14 THz (low T) and orbital waves 30 THz (room T)



# **Phase Control of Competing Ground States**





Ground-state vibrational pumping Pr<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub>

- melting of charge ordering in electronic ground state – structural origin?

#### *Tailored excitation is essential – access physics of interest, recovery dynamics*



**Ultrafast Materials Program** 

min

LBNL







Office of Science

# **Ultrafast X-rays - New Insight on Complex Materials**



......

LBNL

### Vibrationally Driven I-M Transition in a Manganite

- THz vibrational control of correlated-electron phases targeting specific vibrational modes - Mn-O stretch
- Ultrafast I-M phase transition electronic ground state x10<sup>4</sup> resistivity change



#### **Future Scientific Questions and Challenges:**

Crystallographic distortion associated with electronic phase transitions? *ultrafast x-ray diffraction, EXAFS* 

Magnetic nature of the metallic phase – ferromagnetic? *ultrafast x-ray dichroism* 

Dynamics of electronic structure - charge/orbital ordering? *ultrafast resonant x-ray diffraction time-resolved soft x-ray microscopy, XPCS (phase separation)* 

Dynamics of electronic structure – charge localization/delocalization? *ultrafast XAS* – 3d-2p hybridization *ARPES* – dynamic band structure, valence charge distribution

Ultrafast x-ray techniques relevant for a broad range of complex materials (organics, multiferroics, novel superconductors....)



![](_page_10_Picture_14.jpeg)

# LBNL

# Static XAS - Insulator/Metal Transition in Manganites

![](_page_11_Figure_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_12_Figure_0.jpeg)

• XAS evidence of I-M transition, DOS spectral weight transferred to absorption threshold

- Mn-3d/O-2p hybridization
- Modification of 10Dq crystal field splitting

![](_page_12_Picture_5.jpeg)

# LBNL Photo-induced XAS Changes - Evidence of IM Transition Photo-induced vs. Magnetically-induced Phase Transition:

The DOS change in the conduction band appears in the O 1*s* XAS spectrum and spectral weight is transferred to the absorption threshold.

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

**Ultrafast Materials Program** 

\*\*\*\*\*\*

![](_page_14_Figure_0.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_15_Figure_0.jpeg)

S. Zhou et al. Phys. Rev. Lett., (in press).

### Nature of the ordering is very different!

![](_page_15_Picture_3.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_17_Figure_0.jpeg)

Ultrafast Materials Program

Office of Science

#### \*\*\*\*\*\* 100001-07 **Charge/Orbit/Spin Ordering Dynamics in Manganites** LBNL *Time-resolved Resonant X-ray Diffraction -* Pr<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub> (1 - 10)800ps after pump 0.8 mJ/cm<sup>2</sup> Intensity (arb. unit) before pump Intensity 300ps (0 0 1) -1ms hvout hv. ٩ 10 149 147 148 150 640 650 660 146 630 hv (eV) Detector angle (~q) Differential Signal (%) 0 0 Long recovery time -10 -10 -20 -20 **Melting time** -30 shorter than 70ps -30 -40 -40

20

0

100

![](_page_18_Picture_1.jpeg)

80

60

Pump probe delay (ns)

100

**Ultrafast Materials Program** 

-100

Pump probe delay (ps)

# LBNL Dynamic Probe of Electronic Structure - Time-resolved ARPES

Electron energy analyzer

.....

- Photoemission occupied states, XAS unoccupied states
- Time evolution of single-particle spectral density function  $A(k,\omega)$

ENERGY

Office of Science

- Dynamic band structure response to tailored excitation
- Time-resolved separation of correlated phenomena in time

![](_page_19_Figure_6.jpeg)

![](_page_20_Figure_0.jpeg)

### **Controlled perturbation of superconducting state (near-equilibrium)**

- Identify specific modes associated with superconducting state
- Observe re-establishment of SC from near-by states (e.g. transient pseudogap)
- Resolve this process with *time*, *energy*, *spin*, and *momentum* resolution

Time and spin-resolved ARPES is a powerful now tool to understand a wide class of complex materials: topological insulators, CMR compounds, multiferroics, etc.

# LBNL Time-resolved ARPES at KeV Energies Electrons interact strongly

Electrons interact strongly Surface Sensitivity – 5-20A

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_3.jpeg)

# X-ray Photoemission Electron Microscopy: XPEEM

![](_page_22_Figure_1.jpeg)

psec current pulse

......

LBNL

Vortex dynamics micron-size Co patterns

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

S.B. Choe et al., Science 2004

![](_page_22_Picture_6.jpeg)

![](_page_22_Figure_7.jpeg)

![](_page_22_Picture_8.jpeg)

![](_page_23_Picture_0.jpeg)

# **Plasmonic Nanoscale Optical Manipulation**

Why high-rep-rate ultrafast X-ray source?

Plasmonic systems:

- THz bandwidth and nm localization
  ⇒ nm spatial and fsec temporal resolution
- Current optical and EUV methods lack both spatial and temporal resolution

# ERL:

Time-resolved photoemission electron microscopy (PEEM)

- Energy resolved visible pump x-ray probe PEEM
  - high x-ray photon energy 'freezes' the surface potential in the kinetic energy of the photo-electron
- Coulomb interaction dictates only a few electrons/shot high repetition rate is essential

![](_page_23_Picture_11.jpeg)

### **Probing Electron Correlation in Solids** Inelastic X-ray Scattering

![](_page_24_Figure_1.jpeg)

Time-resolved RIXS: development of correlation  $S(q, \omega)$  in response to tailored excitation

ENERGY

Office of Science

**Ultrafast Materials Program** 

\*\*\*\*\*

LBNL

![](_page_25_Picture_0.jpeg)

### **Time-resolved ARPES**

- Follow charge correlations (in real time, with  $k, \omega$  resolution) as they develop
- Evolution of electronic structure in response to tailored excitations
- Probe  $A(k,\omega)$  for states above EFERMI (nominally un-occupied)
- Separate correlated phenomena in the time domain

# Hard X-ray Photoemission

- Bulk sensitive
- Map entire Brillioun zone
- Interface sensitivity
- Electron holography

# Time-resolved Photoemission Electron Microscopy (XPEEM)

- Real-space imaging of electronic structure + time resolution + element specific
- Phase separation, magnetic domains, plasmonics

### **ERL Advantages:**

- Short pulses (~100 fs)
- High rep-rate (space charge) > ~1 MHz (GHz?)
- Hard X-rays

### **ERL Challenges:**

- Few femtosecond (sub-fs) pulses?

  - Soft X-rays (<1 keV)</p>

![](_page_25_Picture_22.jpeg)

### **Resonant X-ray Scattering – Electronic Structure**

### **Elastic:**

concere?

LBNL

- Evolution of charge/orbital/spin ordering phenomena
- Long-range (Bragg)
- Short-range (X-ray photon correlation spectroscopy correlation time/length) (see: XDL 2011 Workshops 1, 5, 6)

### Inelastic (X-ray Raman)

- Density-density correlation function  $S(q, \omega)$
- Follow charge correlations (in real time, with  $k,\omega$  resolution) as they develop

# ERL Advantages Short pulses (~100 fs) High rep-rate Hard X-rays ERL Challenges Higher energy resolution (RIXS) (10 meV ⇔ 200 fs, transform limit) Rep rate: ~100 kHz to 1 MHz, (GHz?, average flux) Soft X-rays (<1 keV)</li>

![](_page_26_Picture_9.jpeg)

![](_page_27_Picture_0.jpeg)

# **Acknowledgements**

S. Zhou Y. Zhu M. Langner M. Rini **LBNL - Materials Sciences** 

![](_page_27_Picture_3.jpeg)

#### Y.-D. Chuang Z. Hussain *LBNL- Advanced Light Source*

John Freeland **APS - ANL** 

T. Garl A. Cavalleri **Oxford University** 

S. Wall

P. Yu R. Ramesh *LBNL – Materials Sciences U.C. Berkeley*  Y. Tomioka JRCAT Tsukuba

> Y. Tokura *U. Tokyo*

![](_page_27_Picture_10.jpeg)