Time-domain experiments in diamond anvil cells
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Challenges:
» Materials characterization under extreme conditions of high P-T -strain rate
» New materials synthesis under extremes including non-equilibrium conditions
New pulsed laser and X-ray techniques:
» Pulsed laser heating
» Ultrafast laser pump-probe techniques
» Combined Xray synchrotron-pulsed laser experiments
» Laser driven shock compression in the DAC

Themes:
» Metals thermal EOS and melting: Pt

» Simple diatomics- molecular dissociation: H,, D,, N,, O,
» Minerals: MgO

S » Noble metals-thermal conductivity: Ar
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Temperature (K)

Scientific challenges: bridge the gap between static and dynamic

experiments in P-T-strain rate conditions reached & probed
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Extreme P-T conditions
are relevant for:

-warm dense matter
-new materials synthesis

Proposed pulsed
heating (sketch) t

-fast chemical reactivity
- materials strength
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Here we propose to combine
static and dynamic experiments
in the DAC by performing

* pulsed laser heating

* laser driven shock in the DAC



Melting phenomena and properties of fluids at high P-T condition

Shock & static experiments
disagree by 1000’s K Diagnostics of melting is scarce
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Problems with static methods
« Instabilities (e.g., diffusion) Guillaume et al., 2011
e chemical reaction

* indirect criteria and lack of positive observations

New techniques are needed to enable accurate measurements of melting phenomena
improved laser heating techniques:

Time-resolved X-ray & optical techniques :
» diffuse peak in XRD

» XAS spectroscopy

» elastic, optical, and vibrational properties



Intensity (arb. units)

- Pulsed versus continuous laser heating in the DAC
i i Finite element calculations, maps
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» Measurements are very challenging (small volume, strong thermal radiation)
» Uniform in space and time heating in the DAC require longer pulses



Time-domain experiments in laser heated DAC:
thermal radiation & chemical reactivity suppression

Coupler
Timing for pulsed heat + pulsed
Raman operation:

Measurement T map: FE calculations
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Pulsed heating (ns and us): we discriminate spatially and temporally
(by measuring ~5-10 us after the arrival of the heating pulse).

A. F. Goncharov & J. Crowhurst (2005); Goncharov et al., 2008; Goncharov et al., 2010



Time-Resolved Raman Spectra of Hydrogen with double-sided
microsecond laser heating

Sample: H,, Ir Coupler P = 10-25 GPa
| after

Raman spectra
CW excitation 60 GPa
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Rapidly collected Raman spectra show
modified intramolecular bonds above
40 GPa.

Subramanian et al. PNAS, 2011
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X-ray diffraction combined with pulsed laser heating
Spectrograph & Intensified e
gated CCD detector

Pulsed fiber laser
1-50 ps, 5-20 KHz

Intensity, a.u.

Time-resolved
detector: Pilatus

Goncharov, Struzhkin, Prakapenka, Kantor, Rivers, Dalton
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Reletive

Pulsed laser heating in the DAC: us timescales

Pulse profile vs Time-resolved X-ray diffraction

Thermal expansion Detection of melting
& temperature histories
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Optical Pump-Probe System for Time Domain Thermoreflectance
experiments use a double modulation approach
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We are developing a new coherent Antistokes Raman
and broad band spectroscopy systems
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Broadband Optical Spectroscopy will enable single shot study of
optical properties at the extreme environments attainable in the DAC.

Supercontinuum Generation (SG) 3 Supercontinuum
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The supercontinuum data was collected in a single shot manner at ~180 nJ/pulse into the
fiber

Tungsten lamp (~3000 K) data collected at 103 longer accumulation time.
D. A. Dalton & S. McWilliams




Time-domain optical spectroscopy in the diamond-
anvil cell.

Transient  extreme conditions; Oxygen, absorbance with P & T

diamond anvil cell combined with : : : T
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First Sweep of the Supercontinuum using a streak camera
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Spectroscopy (CARS) will be used for
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Broadband Coherent Anti-Stokes Raman Spectroscopy (CARS) is
planned to perform single shot study of optical properties at the
extreme environments attainable in the DAC: first tests at CIW

CARS spectra with supercontinuum at CIW ) )
CARS spectra with supercontinuum
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Broadband Coherent Anti-Stokes Raman Spectroscopy (CARS) is
planned to perform single shot study of optical properties at the
extreme environments attainable in the DAC: first tests at CIW

CARS spectra with supercontinuum at CIW
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Laser driven shock compression in the DAC:
samples are dynamically compressed in the DAC

Ultrafast interferometry diagnostics
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* Precompression in 100 GPa range is possible

* Preheating and precooling if needed

e Ultrafast experiments can be small scale:

Table top system, unlike currently better known technique of laser shocks
which involves large laser facilities (such as NIF)

Armstrong and Crowhurst, LLNL



Observation of Off-Hugoniot Shocked States with Ultrafast Time Resolution:
Probing High-pressure, Low-temperature States
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Laser shocks in the DAC can generate and detect 10s GPa
shock waves (and low pressure acoustic waves) in materials
under precompression of 10s GPa



First shots on deuterium
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*Shock and particle velocities of ~12-13 km/s and ~1 km/s for precompression ranging up to 36

GPa, giving a shock pressure ~10 GPa.

*Possible phase transition over the duration of the probe window
M. Armstrong. J. Crowhurst, LLNL
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Outlook: the field is mature
We are looking for new opportunities which will be
given by new generation synchrotron sources

» Pulsed laser techniques have a great abilities to:

- access unavailable previously extreme P-T conditions

- overcome problems of containing and probing chemically
reactive and mobile materials

-study vibrational, optical, elastic, transport properties under
extreme conditions

» The full potential of these techniques will be reached with
further development of ultrafast (ps to fs) pump-probe &
single —shot techniques coupled to pulsed laser heating and
laser shocks in the DAC.

-perform experiments in a time domain to access the time
scale and dynamics of phase transitions & chemical reactions

» We are looking forward for developing new combined X-ray
— optical techniques at synchrotron beamlines (e.g., ERL, Petra
ll, XFEL, NSLS-II)



or Extreme Cond




