

SOLID HYDROGEN UNDER PRESSURE

A fresh look at the H-H distances

Vanessa Labet, Paulina Gonzalez-Morelos, Roald Hoffmann, N. W. Ashcroft

Context

2 / 43

R.J. Hemley, High Pressure Research, 2010, 30, 581-619

Description of the study

LETTERS

Structure of phase III of solid hydrogen

CHRIS J. PICKARD1* AND RICHARD J. NEEDS2 ¹Scottlish Universities Physics Alilance, School of Physics and Astronomy, University of St Andrews, St Andrews, File KY16 9SS, UK

*Scoups onevenues registion valuation, school of registers and astronomy, onevenue of standardes, standardes, released on the set of siss, or *Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 OHE, UK *e-mail: cjp10@st-andrews.ac.uk

C. J. Pickard & R. J. Needs, Nature Physics, 2007, 3, 473.

A LABORATORY FOR LEARNING MORE ABOUT HYDROGEN UNDER PRESSURE

- Calculations have been repeated (good agreement with the original study) DFT/PAW-PBE – R_{cutoff}=0.8 a₀ E_{cutoff}: 2,000eV – k-points resolution: 2π*0.02 Å⁻¹
- Structures optimized at several pressures to be able to study the evolution of the H-H distances under pressure

Equation of State

L. Caillabet, S. Mazevet, P. Loubeyre, Phys. Rev. B, accepted

Pickard and Needs "molecular "structures

Pickard and Needs monatomic structure

6 / 43

P>490GPa

 $I4_1/amd$

- H atoms 4-coordinated
- 6-membered rings

Intermolecular distance

7 / 43

W. Grochala, R. Hoffmann, J. Feng, N.W. Ashcroft, Angew. Chem. Int. Ed., 2007, 46, 3620

Intramolecular distance

Experimental probes of the H₂ bond length and strength

9 / 43

FIG. 2. Spectroscopic determination of the intramolecular distance of H_2 in p- H_2 solid at 5 K. The dots identify the minimum of the intramolecular potential and the triangles the mean value of the lowest vibrational state.

FIG. 7. Pressure dependence of the fundamental transitions of the Raman $[Q_1(J)_{Raman}]$ and infrared $[Q_1(J)_{IR}]$ vibrons at 295 K. The Raman and IR vibrons correspond to the in-phase and out-of-phase combination of the two internal stretching modes, respectively, as shown in the inset for an assumed structure (e.g., hcp) with two molecules per unit cell. The Raman data are from Sharma *et al.* [1980(a)], Hemley and Mao [1990(a)], and Hemley, Hanfland, Eggert, and Mao (1994). The infrared data are from Mao *et al.* (1984) (low pressure) and Hanfland *et al.* (1992) (high pressure). The dashed curve summarizes the results for the Raman vibron of deuterium [Sharma *et al.*, 1980(b); Hemley, Hanfland, Eggert, and Mao, 1994], where the frequency has been scaled by $\sqrt{2}$.

P. Loubeyre, M. Jean-Louis and I.F. Silvera, Phys. Rev. B, 1991, 43, 10191

H. Mao & R.J. Hemley, Rev. Mod. Phys., 1994, 66, 671

Degree of equalization

Conclusions 1

- Study of the structures proposed by Pickard and Needs as a laboratory for learning more about hydrogen under pressure:
 - □ As P ↑:
 - The shortest intermolecular H_2 - H_2 separation \downarrow
 - whereas the intramolecular H-H bond length globally \uparrow (slightly).
 - But resistance to a perfect equalization of the H-H distances
 - \rightarrow possible molecular metallic state of solid hydrogen, before its dissociation.
 - $3 \neq$ regimes for the evolution of the <u>intra</u>molecular H₂ bond length
 - At lower pressures, it decreases slightly with pressure,
 - then the H_2 bond length elongates.
 - And at still higher pressures, it gets shorter again
 - Proposing an equalization function
 - as a useful way to look at the evolution of H---H separations obtained from static calculations.
 - useful tool to compare quantitatively the behavior of hydrogen by itself under pressure and that of hydrides.

Why the H₂ bond should shorten under pressure?

H_2 molecule confined in a hard box

13/43

- The H atoms are placed at the foci of a spheroidal "box".
- Outside the box, the potential V is infinite (the wave function is forced to be zero – the electronic density is forced to be completely inside the box).
- For several values of the semimajor axis $(1/_2 R\lambda_0)$, the H₂ bond length R is optimized.

Decreasing the size of the box Modeling an increase of pressure

R. LeSar, D.R. Herschbach, J. Phys. Chem. 1981, 85, 2798-2804.

H_2 molecule confined in a hard box

14/43

As expected, as the H_2 bond is shortened, the bond is stiffened.

R. LeSar, D.R. Herschbach, J. Phys. Chem. 1981, 85, 2798-2804.

H₂ molecule "confined" in a "softer" box

Long H₂ bonds in organometallic chemistry

16/43

G. J. Kubas, Chem. Rev., 2007, 107, 4152-4205

Long and weak

17/43

complex	$\nu({ m HH})$	dHH
CpV(CO) ₃ (H ₂)	2642	
CpNb(CO) ₃ (H ₂)	2600	
$Cr(CO)_5(H_2)$	3030	
$Cr(CO)_3(PCy_3)_2(H_2)$		0.85
Mo(CO) ₅ (H ₂)	3080	
Mo(CO) ₃ (PCy ₃) ₂ (H ₂)	~2950c	0.87
Mo(CO)(dppe) ₂ (H ₂)	2650	0.88
W(CO) ₅ (H ₂)	2711	
$W(CO)_3(P^iPr_3)_2(H_2)$	2695	0.89
$W(CO)_3(PCy_3)_2(H_2)$	2690	0.89
$W(CO)_3(PCyp_3)_2(H_2)^d$		
$Fe(CO)(NO)_2(H_2)$	2973	
$Co(CO)_2(NO)(H_2)$	{3100, 2976} ^e	
FeH2(H2)(PEtPh2)3	2380	0.82
RuH2(H2)2(PiPr3)2	2568	0.92
Tp*RuH(H ₂) ₂	2361	0.90
Tp*RuH(H2)(THT)	2250	0.89
[Os(NH ₃) ₅ (H ₂)] ²⁺	2231 ^b	[1.34]
[CpRu(dppm)(H ₂)]+	2082b	1.10
Tp*RhH ₂ (H ₂)	2238	0.94
Pd(H ₂) (matrix)	2971	0.85
$Ni(510) - (H_2)$	3205	

G. J. Kubas, Chem. Rev., 2007, 107, 4152-4205

Weaker than in solid hydrogen

18/43

H. Mao & R.J. Hemley, Rev. Mod. Phys., 1994, 66, 671

T.A. Strobel et al., PRL, 2009,103, 065701

... because of donation/backdonation

J.-Y. Saillard and R. Hoffmann, J. Am. Chem. Soc. 1984, 106, 2006-2026

Why the H₂ bond should lengthen under pressure?

Fragment MO population

21/43

Fragment MO analysis with the extended Hückel method (YAeHMOP)

Intermolecular charge transfer

Polarization

Intramolecular distance

Correlation MO pop. – H₂ bond length

Two co-existing effects

26/43

Correlation between H₂ bond and FMO population

Conclusions 2

- 2 models for what happens to the <u>intra</u>molecular H-H separation as pressure ¹.
 - A "physical" effect: spatial confinement
 - Shortening and stiffening of the H-H bond
 - A "chemical" effect: orbital interaction
 - Lengthening and weakening of the H-H bond.
- Analysis of the structures proposed by Pickard and Needs:
 - **D** As P \uparrow , σ_{g} fragment MOs pop. \downarrow , σ_{u}^{*} fragment MOs pop. \uparrow
 - H₂ mol. partially excited almost no intermolecular charge transfer but H-H bonds slightly polarized.
 - The H-H bonds are much shorter than they should be.
 - \rightarrow 2 effects coexist and compete under pressure.

Minimizes the dipolar interaction energy

2 limit cases

 $\delta = 0$

Face-centered cubic lattice (** 2 atoms superimposed)

Simple Cubic Lattice

$Pa\overline{3}$: molecular \rightarrow monatomic

Coordination Number

Which structure at $\xi = 1$? – $Pa\overline{3}$

Which structure $\xi = 1$? – $Pa\overline{3}$

33/43

Binary system $Pa\overline{3} \rightarrow P2_13$

 $\delta_{Fe} = 0.1365$ $\delta_{Si} = 0.1574$ $\delta_{ideal} = 0.1545$

FeSi

Potential energy profiles - $Pa\overline{3}$

• As expected, the coordination number increases as the density increases $(1\rightarrow 6\rightarrow 7)$.

• Around $r_s = 1.1 - 1.2$, change δ costs very little energy \rightarrow "plastic" state?

DFT/PAW-PBE – R_{cutoff} =0.8 a_0 E_{cutoff} : 2,000eV – k-points resolution: 2π *0.04 Å⁻¹

Conclusions 3

□ As P ↑:

- The shortest <u>inter</u>molecular H₂-H₂ separation ↓whereas the <u>intra</u>molecular H-H bond length globally ↑. But resistance to a perfect equalization of the H-H distances.
- 2 effects coexist and compete: spatial confinement and orbital interaction. The H-H bonds are shorter than they should be.
- As the system approaches equalization, appearance of a plastic state? Has to be studied in more detail, taking into account dynamics.

Acknowledgments

- Prof. Roald Hoffmann
- Prof. N.W. Ashcroft
- Dr. Paulina Gonzalez-Morelos
- Dr. Xiao-Dong Wen
- Dr. Patryk Zaleski-Ejgierd
- Prof. Louis Hand
- Dr. Andrey Rogachev

Thank you!